
&0

~DTIC

ELECT
DEC 19 1989

~OF~ So B

AN EMPIRICAL DEVELOPMENT OF
PARALLELIZATION GUIDELINES FOR

TIME-DRIVEN SIMULATIONI

THESIS

Mark Leslie Huson
Captain, USAF

AFIT/GCS/ENG/89D-10

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Bose, Ohio= : .. ., 8 912 18 093
Appvvvd ioe p~ble rWzM1 I 0 *

-Wafts

AFjT/GCS/ENC,/89D- 10

AN EMPIRICAL DEVELOPMENT OF
PARALLELIZATION GUIDELINES FOR

TIME-DRIVEN SIMULATION

THESIS

Mark Leslie Huson
Captain, USAF

AFIT/GCS/ENG/89D-10 DTIC
S ELECTE

DEC 191989 U
B

Approved for public release; distribution unlimited

..1It (('S..t.N (;/,9)-10

AN EMPIRICAL DEVELOPMENT OF PARALLELIZATION

GUIDELINES FOR TIME-DRIVEN SIMULATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Mark Leslie Huson, B.S., M.S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Acknowledgments

There are many individuals who deserve thanks for their support in thiF re-

search effort. First, I would like to thank Dr. Thomas C. Hartrum, my thesis advisor,

for his guidance, comments, suggestions, and ideas. Without his help and encour-

agement this document would not exist. I would also like to thank the members of

my thesis committee, Maj William Hobart, Capt Bruce George, and CPT Robert

Hammell. They certainly earned my gratitude for providing badly needed input and

my respect for their patience and thoroughness in reviewing my appropriately named

rough draft.

I would also like to thank all those people who made life and learning at AFIT

bearable. The entire GCS section comes to mind tor the infrequent but necessary

respits from studying. In particular my fellow Cub fans, Captains Bill Iarding and

Mike Proicou and their wives, and Captains Steve March and Gary Whitted and

their wives, who though not Cub fans, put on a good show during our trip, to waich

some games.

I would also like to recognize the help of my professors at the University of

Tulsa. They will never know how well they prepared me for AFIT and I'm not sure

they would believe me if I told them. Ellen, Suny, Cathy, Cindy and Liz at Moore's

Nautilus would be equally surprised if I were to tell them how much they helped me

to maintain my sanity in what otherwise would have been ai ii)'. ssible program.

Finally, I would like to thank my parents for their support and encouragement. o

No amount of effort on my part can repay the love and patient guidance they have I
C

provided over the years. It may have seemed that I paid no attention or didn't care, -d |

but they were never discouraged, and for that I am thankful.

Mark Leslie lHuson 1tv Codes
. and/or

Dis SpjeoaI

Table of Contents

P)age

A cknc'i dgm ents .

Table of C ontents .

List of Figures

List of Tables xii

Abstract Xi%

1. Introduction -

1.1 Why Distributed Simulation? i-i

1.2 The Simulation Process 1-2

1.2.1 Simulation Categories 1-2

1.2.2 Implementation Languages 1-3

1.3 Distributed Simulation 1-3

1.3.1 Current Research i-3

1.3.2 Hardware Perspectives 1-5

1.3.3 Research Approaches 1-5

1.3.4 Implementation Concerns 1-6

1.4 Problem Statement 1-6

1.5 Scope 1-7

1.6 Approach 1-8

1.7 Overview of the Thesis 1-9

I!!

Page

II. Issues in Parallel Simulation 2-1

2.1 W hat are the isue . .9 '- 12. Watar teissues9 -

2.1.1 Feasibility 2-1

2.1.2 Interprocess Communication 2-2

2.1.3 Synchronization 2-4

2.1.4 Deadlock 2-5

2.1.5 Load Balance 2-6

2.1.6 Determinism 2-7

2.2 Conservative, Optimistic, or a Middle Ground 2-8

2.3 Time Driven vs. Event Driven 2-10

2.4 Parallelizing Existing Simulations 2-10

2.4.1 Deciding to Parallelize 2-10

2.4.2 Level of Effort 2-11

III. Parallel Hardware Architectures 3-1

3.1 The Intel iPSC/1 3-1

3.1.1 AFIT iPSC/1 Configurations 3-4

3.2 The Intel iPSC/2 3-4

3.2.1 AFIT iPSC/2 Configuration 3-5

3.3 The Encore Multimax 3-5

3.3.1 AFIT Encore Configuration 3-7

IV. The Ballistic Missile Defense (BMD) Simulation 4-1

4.1 Use as a Test Vehicle 4-1

4.2 Introduction and Description 4-1

4.3 Analysis of the Sequential Simulation 4-5

iv

Page

V. Implementations of the BMD Simulation 5-1

5 1 Description of iPSC/1 Implementation #1 5-2

5.1.1 Decomposition Process 5-3

5.1.2 Paraelization Characteristics 5-4

5.2 Description of iPSC/1 Implementation #2 5-4

5.2.1 Decomposition Process 5-5

5.2.2 Parallelization Characteristics 5-6

5.3 Description of iPSC/i1 lmplerncntat:on #3 5-6

5.3.1 Decomposition Process 5-7

5.3.2 Parallelization Characteristics 5-8

5.4 Description of iPSC/1 Implementation #4 5-8

5.4.1 Decomposition Process 5-9

5.4.2 Parallelization Characteristics 5-9

5.5 Description of iPSC/1 Implementation #5 5-10

5.5.1 Decomposition Process 5-10

5.5.2 Parallelization Characteristics 5-10

5.6 Description of iPSC/1 Implementation #6 5-11

5.6.1 Decomposition Process 5-12

5.6.2 Parallelization Characteristics 5-12

5.7 Description of iPSC/1 Implementation #7 5-13

5.7.1 Decomposition Process 5-13

5.7.2 Parallelization Characteristics 5-14

5.8 Description of iPSC/2 Version of Implementation #7 5-14

5.9 Description of iPSC/1 Implementation #8 5-15

5.9.1 Decomposition Process 5-15

5.9.2 Parallelization Characteristics 5-15

5.10 Encore Implementation for the BMD Simulation 5-16

v

Page

5.10.1 Implementation Description 5-16

5.11 A Final Note on Parallel Implementations 5-18

VI. Empirical Results and Analysis 6-1

6.1 iPSC Implementation Results 6-2

6.1.1 iPSC/1 Implementation #1 6-2

6.1.2 iPSC/1 Implementation #2 6-2

6.1.3 iPSC/1 Implementation #3 6-3

6.1.4 iPSC/1 Implementation #4 6-4

6.1.5 iPSC/1 Implementation #5 6-4

6.1.6 iPSC1/1 Implementation #6 6-4

6.1.7 iPSC/1 Implementation #7 6-4

6.1.8 iPSC/2 Implementation #7 6-5

6.1.9 iPSC/1 Implementation #8 6-5

6.2 Encore Implementation Results 6-5

6.3 A Comparison of Architectures 6-6

6.3.1 Performance 6-6

6.3.2 Programming Environment 6-10

6.4 Guideline Development 6-12

VII. Conclusions and Recommendations 7-1

7.1 Conclusions 7-1

7.2 Recommendations 7-3

7.3 Summary 7-5

Appendix A. Guidelines for Simulation Parallelization A-1

A.1 General Concerns A-1

A.2 The Guidelines A-3

vi

Page

Appendix B. BMD Simulation Data Structures B-I

Appendix C. Implementation Results C-I

Appendix D. Program Pseudocode D-1

D.1 iPSC/1 Implementation #1 D-1

D.1.1 Host Program D-1

D.1.2 Node 0 - ASSIGN D-3

D.1.3 Node 1- LNKORD D-4

D.1.4 Node 2 - SBMIT and SBMPOSI)-5

D.1.5 Node 3 - RRBVIS D-6

D.1.6 Node 4 - BOSTIT and TRAJ D-7

D.1.7 Node 5-LNKCAL D-7

D.1.8 Node 6 - RRPVIS I)-9

D.1.9 Node 7 - MIRVIS D-10

D.2 iPSC1 Implementation #2 D-11

D.2.1 Host Program D-11

D.2.2 Node 0 - LNKORD and ASSIGN1)-13

D.2.3 Node 1 - RRBVIS, RRPVIS, MIRVIS, &-

LNKCAI D-..1

D.2.4 Node 2 - BOSTIT and TRAJ D-16

D.2.5 Node 3 - SBMIT and SBMPOS D-16

D.3 iPSC/1 Implementation #3 D-17

D.3.1 Host Program D-17

D.3.2 Node 0 - ASSIGN D-19

D.3.3 Node 1 - SBMIT and SBMPOS D-20

D.3.4 Node 2 - RRPVIS D-21

D.3.5 Node 3 - BOSTIT and TRAJ D-22

vii

P~age

D.3.6 Nod, 4 - RRBVIS)-23

D.3.7 Node 5+ - MIRVIS, LNKCAL, &- INIKOI I)-21

D.4 iPSC/i Implenentation #4 D-26

D.4.1 Host Program I)-26

D.4.2 Node 0 - ASSIGN I-2S

D.4.3 Node 1 - SBMIT and SL3MIPOS)-2)

D.4.4 Node 2 - BOSTIT and TRAJ L)-3()

D.4.5 Node 3 - RRIBVIS I)-31

D.4.6 Node 4+ - RRPVIS, MIR\VIS, LNKCAL, ,k

LNKORD D-32

D.5 iPSC/1 Implementation #5 I)-31

D.5.1 Host Program I)-31

D.52 Node 0 - ASSIGN D-36

D.5.2 Node 1 - SBMIT and SBMPOSI)-37

D.5.4 Node2- BOSTIT and TRAJ -3s

D.5.5 Node 3 - Supervisor node D-3s

D.5.6 Node 4+ - RRPVIS, RRBVIS, MIRVIS,

LNKCAL, & LNKORD D-0

D.6 iPSC/1 Implementation #6 D-41

D.6.1 Host Program I)-41

D.6.2 Node 0 -ASSIGN I)-43

D.6.3 Node 1 - Supervisor node I)-45

D.6.4 Node 2+ - SBMIT, SBMPOS, BOSTIT, TRAJ.

RRPVIS, RRBVIS, MIRVIS, LNKCAL, &

LNKORD [-46

D.7 iPSC/1 Implementation #7 D-48

D.7.1 Host Program I)-48

D.7.2 Node 0 - SBMIT, SBNIPOS, BOSTIT, TIAJ,

& ASSIGN)-50

viii

Page

D.7.3 Node I - BOSTIT. TRAJ, Supervisor node I)-52

D.7.4 Node 2+ S3M IT, SBMPOS, BOSTIT, TI{AJ.

RRPVIS, RRIVIS, MIRViS, LNKCAL, ,k

LNKORD D-53

D.8 iPSC/l Implementation #7 D-55

D.8.1 Host Program D-55

D.8.2 Node 0 - ASSIGN D-57

D.8.3 Node 1+ - RRPVIS, RRBVIS, MI RVIS,

LNKCAL, & LNKOI). I)--59

D.9 Encore Implementat ion.... D-61

Bilbliography 3I8-1

Vita VITA-I

ix

List of Fiqures

Figure Page

2.1. I)ependency Graph for A Car Wash Sirnulation.. -

2.2. Simplified Dependency Graph of the BMD Sinmulatijn 2-3

2.3. Dependency Graph of an Assembly Line2-1

3.1. Interconnections in a 16 node hypercube 3-2

3.2. Message Routing in dhe iPSC/1. 3-1

3.3. Encore Multimax Functional Diagram.. 3-6

4V. Ballistic Missile Defense Simulation Engagement Parameters ... 4-3

4.2. Functional Structure of BMDSIM... 4-4I

4.3. Functional Structure of BMI)SIM with FORTRAN names . . . 4-6

4A.-. Data Flow Diagram of Sequential BMDSIM 4-7

4.5. Top Level Call Tree for Sequential BMDSIM 4-8

4.6. Simplified Data Flow Diagram of BMDSIM withoL;t constants 4-10

5.1. iPSC/1 Node Assignments and Communication for Implementa-

tion #1 5-3

5.2. iPSC/ 1 Node Assignments and Communication for Implementa-

tion #2 5-5

5.3. iPSC/ 1 Node Assignments and Communication for Implenienta-

tion #3 5-7

5.4. i PSC/ I Node Assignnents and Communication for Implenenta-

tion #4 5-9

5.5. iPSC/1 Node Assignments and Cornmu.ication for Implementa-

tion #5 5-11

5.6. iPSC/1 Node Assigiments and Communication for Implementa-

tion #6 5-12

x

Figure Page

5.7. iPSC/1 Node Assignments and Communication for Implemienta-

tion #7 5-13

5.8. iPSC/1 Node Assignments and Communication for Implementa-

tion #8 5-15

5.9. Encore - Implementation 5-20

6.1. Speed up Graph for Comparable ImplemnMtations on Differeth Ar-

chitectures 6-7

6.2. Speed up Graph for Comparable Implementations Excluding Ili-

tialization Overhead 6-8

6.3. Overhead Times for Implementations 6-9

6.4. Normalized Overhead Times (% of Execution Time) 6-10

6.5. Average Time to Load Node Processors versus Number of Unique

Processes 6-11

6.6. Speed up Graph for iPSC/1 Inplementations 6-13

6.7. Progress of Sequential Simulation and Implementation #7 (32 nodes)

on the iPSC/1 6-15

6.8. Instantaneous Speed up for one 32 node trial of Implementation #7

on the iPSC/1 6-16

6.9. Dynamic versus Static Data Partitioning 6-17

6.10. Replicated Process Efficiency in Static and Dynamic Data Parti-

tioning 6-18

6.1i. Actual Speed up versus "Speed up Limit" for the Encore 6-21

6.12. Actual Speed up versus "Speed up Limit" for iPSC/1 Implenenta-

tion #7 6-22

xi

List of Tables

Table Page

4.1. FORTRAN Function - Logicdl Function Equivalence 4-5

4.2. FORTRAN Function - Unix Profile results 4-9

5.1. Encore Parallel BMDSIM Speed up Limits 5-18

6.1. Summary of iPSC Implementation Results 6-3

6.2. Encore Parallel BMDSIM Results 6-6

B.1. BMD Simulation data descriptions and sizes 13-1

B.2. BMD Simulation data descriptions and sizes (Continued) B-2

B.3. BMD Simulation data descriptions and sizes (Continued) 13-3

B.4. BMD Simulation data descriptions and sizes (Continued) . B-4

B.5. BMD Simulation data descriptions and sizes (Continued) 13-5

B.6. BMD Simulation data descriptions and sizes (Continued) B-6

B.7. BMD Simulation data descriptions and sizes (Cuntinued) B-7

C.1. iPSC/1 Implementation #1 Estimated Results C-1

C.2. iPSC/1 Implementation #2 Results C-1

C.3. iPSC/1 Implementation #2 Overhead Time (seconds) C-2

C.4. iPSC/1 Implementation #3 Results C-2

C.5. iPSC/1 Implementation #3 Overhead Time (seconds) C-2

C.6. iPSC/1 Implementation #4 Results C-3

C.7. iPSC/1 Implementation #4 Overhead Time (seconds) C-3

C.8. iPSC/! Implementation #5 Results C-4

C.9. iPSC/1 Implementation #5 Overhead Time (seconds) C-4

C.10.iPSC/1 Implementation #6 Results C-5

xii

Tab]le Page

C.11.iPSC/1 Implementation #6 Overhead Time (seconds) C-5

C.12.iPSC/1 Implementation #7 Results C-6

C.13.iPSC/1 Implementation # " Overhead Time (seconds) C-6

C.14.iPSC/2 Implementation #7 Results C-6

C.15.iPSC/1 Implementation #8 Results C-7

C.16.iPSC/1 Implementation #8 Overhead Time (seconds) C-7

C.17.Encore Parallel BMDSIM1 Results C-8

C.18.Encore Parallel BMIDSIMI Efficiency. C-9

C.19.Encore Parallel BMIDSIMl Overhead Times- 10

xiii

AFIT/GCS/ENG/89D-10

Abstract

Distributed simulation is an area of research which offers great promise for

speeding up simulations. Program parallelization is usually an iterative process

requiring several attempts to produce an efficient parallel implementation of a se-

quential program. This is due to the lack of any standards or guidelines for program

parallelization.

in this research effort a Ballistic Missile Defense (BMD) time driven simulation

program, developed by DESE Research and Engineering , was used as a test vehicle

for investigating parallelization options for distributed and shared memory architec-

tures. Implementations were developed to address issues of functional versus data

program decomposition, computation versus communications overhead, and shared

versus distributed memory architectures.

Performance data collected from each implementation was used to develop

guidelines for implementing parallel versions of sequential time-driven simulations.

These guidelines were based on the relative performance of the various implementa-

tions and on general observations made during the course of the research.

xiv

AN EMPIRICAL DEVELOPMENT OF PARALLELIZATION

GUIDELINES FOR TIME-DRIVEN SIMULATION

I. Introduction

!.1 1 hy Distributed Simulation?

Distributed simulation has received much research attention in the last decade.

The principal goal of distributed simulation is to improve the performance of sim-

ulations, usually with respect to time. Simulation is commonly recognized as a

computationally intensive activity (5, 15, 24, 34, 35, 40). The increased availability

of cheap, powerful microprocessors has resulted in commercially feasible multiproces-

sor computer systems, which, in turn, has increased the opportunities and incentives

for development of distributed simulation methods (18). Distributing a computa-

tional process across multiple processors increases the computing power applied to

a specific problem, and should reduce the "real time" needed to solve the problem.

This is the essence of distributed simulation and of parallel computation in general.

According to Gilmer and Hong, "Parallel processing offers the possibility of

greatly increased performance for simulations which are computationally bound on

existing machines" (15:430). Computation time for many important simulations is

prohibitive with even the fastest sequential computers. For example, Quinn states

that a simulation to produce a 24-hour weather forecast for New York, Washington,

D.C., and Philadelphia would require 24 hours to complete on a 100 megaflop sequen-

tial computer (the equivalent of a Cray-1). This type of time constraint is common

to the areas of weather prediction, aerodynamics, artificial intelligence, analysis of

satellite information, nuclear reactor safety, large digital logic circuits, and military

simulations (35:2).

1-1

1.2 The Simulatioi Process

Biles defines simulation as "the development of a mathematical-logical model

of a system and tie experimental manipulation of the model on a digital com-

puter" (5:7). Similarly, Banks and Carson define it as "the imitation of the operation

of a real-world process or system over time" (1) and Shannon calls it "the process

of designing a model of a real system and conducting experiments with this model

for the purpose elther of understanding the behavior of the system or of evaluating

various strategi,:3 for the operation of the system" (40). The two basic concepts

common to these definitions are to produce a model of a system, and to perform

experiments using that model.

Simulation models are the mechanism through which simulation occurs. Mod-

els are designed to encapsulate the essential features of the system under study (5).

Computer models must be constructed in terms of computable functions and, as

such, require the adoption of a particular view or paradigm of the system. The

resulting model represents the simulation view of the "real wurid" or at least those

aspects of interest to the experimenter (34). This system model is what is translated

into a computer program and implemented as a simulation.

1.2.1 Simulation Categories Simulation models fall into three general cate-

gories according to Pritsker. Discrete simulation models, also called discrete event

models, involve dependent variables which change discretely at specified points in

simulation time referred to as event times. The time variable is either continuous or

discrete, depending on whether the event times can occur at any point in time or

only at specified points. Continuous simulation models, known as time driven mod-

els, have dependent variables which change continuously over simulated time. Such

models are either continuous or discrete in time, depending on whether the values

of the dependent variables are available at any point in simulated time or only at

specified points in simulated time. Combined simulation models are characterized

1-2

by dependent variables which change discretely, continuously, or continuously with

discrete changes superimposed. The distinguishing feature of these simulations is

the interaction between discretely and continuously changing variables (34).

1.2.2 Implementation Languages Biles lists three general classes of languages

for implementing simulation models. High order languages such as FORTRAN, C,

Pascal or Ada may be used for the implementation. General purpose languages, such

as GASP-IV, Simscript, and SLAM-Il, provide more direct support for accepted

simulation practices. In some instances the model implementor may benefit from

using a special purpose language, such as GPSS, though these languages are geared

primarily to a very specific area of application (5:9). High order languages are

most common in current distributed simulation work because few general purpose

or special purpose simulation languages are available on multiprocessor systems.

1.3 Distributed Simulation

Kaudel identifies three kinds of parallelism in simulation models which can be

exploited to speed up parallel implementation of these models. Executing multiple

independent trials of a simulation model is considered application level parallelism.

Performing simulation overhead activities on separate processors, while retaining an

essentially sequential simulation model, is support function distribution. Execution

of a spatially decomposed iodel is model function distribution (27). Jones proposes

an alternative approach to distributing the model based on temporally decomposing

the model in a manner similar to instruction pipelining, though it could be argued

this approach is an extension of Kaudel's model function distribution (26).

1.3.1 Current Research Distributed simulation models fall into the same cat-

egories as general simulation models. They can be discrete event, time driven, or a

combination of the two. The majority of recent studies have addressed the category

of discrete event simulation. Current research (4, 14, 23, 29, 30, 31, 36, 37) has also

1-3

concentrated on the model function distribution approach to model decomposition.

In all cases there is agreement that distributing a simulation across multiple pro-

cessors can decrease the execution time of simulations. However, simulation model

distribution has a price. Implementation is made more complex by the decisions

to be made during model decomposition and by the effects these decisions have on

simulation performance (2, 10, 28, 31, 40).

Distributed simulation introduces problems into the simulation model which

are not present in sequential simulations (6, 7). Early distributed computing para-

digms recognized the potential for deadlock in any system of communicating pro-

cesses (19). Additionally, while partitioning the model among several processors

increases the amount of work which can be accomplished over any period of time,

the overhead incurred in distributing the model may be more than the benefits gained

by partitioning the model in the first place (18).

Many model level concerns unique to distributed simulations depend on the

kind of parallelism exploited in distributing a simulation model. Application lcvel

parallelism introduces few unique problems in modei implementation because each

independent tria!, by definition, is simply an instance of a sequential model. The

problems introduced are primarily resource contention problems, similar to the prob-

lems faced in operating systems. For this reason it has received little attention in

the literature (27). Through his experiments, Comfort discovered support function

distribution is limited by the amount of parallelism present in the support func-

tions (accumulating statistics, managing event lists, generating pseudorandom num-

bers, etc.) and the portion of computation required to accomplish these functions.

Comfort's results revealed that minimal speed up can be expected when applying

support function distribution (11). For these reasons, model function distribution

has received most of the research attention.

1-4

1.3.2 Hardware Perspectives One of the major factors making distributed

simulation research feasible has been the introduction of commercial multiprocessor

systems. The hardware architecture selected for the simulation implementation can

have a profound effect on the efficiency of a given simulation model (2, 10, 28). There

are two basic types of multiprocessor systems available. One type is composed of

processing elements, each with its own local memory, tied together via an intercon-

nection network used for passing messages. These systems are known as distributed

memory systems, examples of which are the Intel iPSC family and the BBN But-

terfly. The second type is shared memory systems, which are characterized by a

collection of processors which access a large, usually partitioned, memory space, and

whose processors communicate via the memory system. The shared memory systems

have the advantage of not requiring explicit message passing and its associated trans-

mission delays, but they are limited by tc number of processors which can be in

Lhe system due to the increased memory bandwidth required to allow concurrent or

shared memory accesses with minimal memory contention (20). Examples of shared

memory systems are the Encore Multimax, and the Sequent Balance.

1.3.3 Research Approaches Bryant and Chandy-Misra were at the forefront

in proposing approaches to solving the problems inherent in distributed simula-

tion (6, 7). Further research has lead to the identification of approaches as either

conservative or optimistic. According to Reynolds, "Algorithms are conservativC if

they satisfy the property that no process receives information from any other process

that predates the current simulation time of the receiving process" (39). Some of

the approaches considered conservative include deadlock detection (9), SRADS (38),

appointments (32), and conditional events (8). In contrast, Reynolds identifies algo-

rithms as optimistic "if processes can act on incomplete information, thus admitting

the case where messages may arrive "in the past"" (39:325) (Quinn calls this relax-

ation in reference to general parallel program design (35)). The optimistic approach

is based on the concept of "virtual time" proposed by Jefferson and Sowizral (23, 24).

1-5

The best known example of optimistic algorithms is the Time Warp operating sys-

tem, developed by Jefferson et al. (25).

Typically, researchers view approaches to the problem of distributed simulation

as falling into one of these two categories. However, Reynolds contends there is a

"spectrum of options" for which these two categories only represent different portions

of the spectrum. Reynolds also proposes a method of describing approaches within

the spectrum and demonstrates his method by developing descriptions of some of

the most commonly recognized approaches (39).

1.3.4 Implementation Concerns The selection of an approach to solving prob-

lems in distributed simulation only addresses part of the difficulty of implementation.

Decomposing a system, using Kaudel's kinds of parallelism, requires careful attention

to the process of mapping the implementation to an available architecture (2, 31).

When properly accomplished, a simulation model is distributed across a computing

environment in such a way as to minimize communication between processors while

balancing the workload so all processors are performing under essentially the same

computational load (18, 31, 39). Mapping model processes to physical processors

is further compounded by variations between the architecture a simulation is orig-

inally targeted for and the architecture on which it may eventually be required to

run (10, 28, 42).

1.4 Problem Statement

Distributed simulation, as an area of research, is still in its infancy. Nearly

all work which is being done in the area is empirically based. Simulations are de-

composed in an ad hoc manner to address the concerns of load balancing, process

communication, selection of architecture, and overall decomposition approach. Usu-

ally, a researcher will try a decomposition and mapping for whatever architecture is

available, collect statistics on the simulation performance, and accept or reject the

1-6

decomposition and mapping based on the collected statistics.

One of the major problems with distributing simulations is the lack of guide-

lines or heuristics for the decomposition, process mapping, and architecture selec-

tion. The amount of information required and the level of effort necessary to make

informed decisions for these important aspects of simulation have led to the ex-

perimental approach to decomposition, process mapping, and selection of a target

architecture. For distributed simulation to become practical, it is necessary to for-

malize these decisions to the extent that decisions, based on an understanding of the

distributed simulation process, can be made with incomplete information and with

reasonable certainty of improving performance.

A formalized approach is particularly important for the process of "paralleliz-

ing" an existing simulation. Virtually all existing simulations are implicitly sequen-

tial in their design and implementation. For these simulations to take advantage of

the performance offered by distributing their processing in a parallel environment,

intelligent decisions must be made to decompose them into parallel processes which

can then be mapped to a selected architecture.

The goal of this effort is to develop a set of guidelines or a methodology for

distributing existing sequential simulations. These guidelines include methods for

performing simulation decomposition, selecting an appropriate synchronization ap-

proach, and selecting an appropriate architecture for the distributed simulation.

1.5 Scope

This research effort is limited to the area of time driven simulation. Spe-

cific topics considered include methods of analyzing and decomposing simulations to

represent the parallelism in the simulation, selection of functional and/or data parti-

tioning for multiple processors, choice of an implementation approach ("optimistic",

"conservative", etc.), and selection of a specific architecture for implementation of

the distributed simulation. These topics are not completely independent, and the

1-7

interactions between them are also addressed in this effort. The area of distributed

discrete event simulation will not be addressed in this effort.

1.6 Approach

The Ballistic Missile Defense simulation, hereafter referred to as the BMI)

simulation or BMDSIM, was used as a test vehicle for this research effort. This

simulation is a time driven battle management simulation which exhibits many of

the computational characteristics of the "typical" battle management/command and

control simulations used for military simulation.

The first step in this effort involves a detailed analysis of the existing sequential

simulation to determine the data dependencies and relative computational loads of

the functional modules of the si:;ulation. This requires both compile and run time

analysis of the source code using source code analyzers an(l profiling tools available

under the Unix operating system.

Several it-thods are applied to characterizing the functional parallelism within

the sequential simulation. Both verbal and graphical representations are used. Data

flow diagrams and process dependency graphs of the existing functions are created to

represent and understand the possible decomposition, and the dependence of these

decom positions on the sequential programs data and control flow.

Once the parallelism has been expressed, the representations are used to map

the independent functions to all Intel i PSC/1 Hypercube parallel architect ure rep-

resenting the class of distributed memory machines. Once a distributed version of

the simulation is running on this architect tre, modifications are made to the run-

ning simulation to eva~iate the performance of the simulation with respect to the

simulation approach taken, the number of processors used, and the structure of the

functional decomposition and their effect, on the overall performance of the sim-

ulation. A data decomposed system is implemented on the same architecture iII

order to compare the relative performance of alternative simnulat ion decompositions.

1-8

The same implementation and evaluation steps are then performed for an Encore

Multimax computer representing the class of shared memory architectures.

Performance results from these implementations are evaluated for execution

time, efficiency, and "speed up". In addition, the ease of implementation is also

addressed, but this is of necessity a subjective measurement. The performance results

are finally correlated to the characteristics of the simulation and the architecture used

in the program implementation.

The final result of this thesis effort is a set of guidelines based on the preceding

steps. The correlated performance resdlts and experiences during this proce.- pro-

vide the criteria for development of the guidelines. The guidelines include "optimal-

architecture and simulation approach selection based on the characterization, and

methods of compensating for "non-optimal" architectures.

The approach outlined here was selected primarily because of the availability of

existing simujations and hardware at the Air Force Institute of Technology. Since tle

BMD simulation was available, and its seouential execution exhibited the extensive

computational requirements common to many of the candidate areas for distributed

simulation, it seemed suitable as a test vehicle for this research. In addition, the

availability of the Intel iPSC/1 lypercube and the Encore Mu' tax made th'mi

logical choices as representatives of their respective architectures.

1.7 Otrcrii of the Thsis

The remaining chapters of this thesis represent the body of research developed

in this effort. Chapter 2 is an analysis of the major issues in parallel simulation which

affect the potential performance of a parallelized simulation. Special attention is paid

to issues specific to the areas of simulation and time driven simult ion. This chapter

concludes with issues related to the problem of parallelizing existing progra'is and

simulations.

1-9

Chapter 3 provides background information on the specific architectures used

during this effort. Architecture details are supplemented with message passing char-

acteristics for distributed memory systems and memory and bus information for

shared memory systems.

Chapter 4 is a general processing description and program analysis for the

sequential BMD simulation. This information is necessary to understand the various

implementations of the simulation created during this effort.

Chapter 5 then describes each of the parallel implementations for the BM1)

simulation. This information includes a general description of each implementation,

the rationale for the implementation, and a statement of the expected performance

of the simulation.

Results for all implementations are contained in chapter 6. This chapter also

includes an analysis and comparison of the results, which is then used to develop a

final set of guidelines.

The conclusion, contained in chapter 7, summarizes this thesis and recommends

areas for further research.

1-10

I. Issues in Parallel Simulation

Any discussion of parallel simulation requires an understanding of the major

issues involved. This chapter outlines some of the issues to be considered both in

parallel simulation and parallel programming in general, though the emphasis is on

simulation.

2.1 14'hat arc the issues?

2.1.1 Feasibility When is it possible to parallelize a program? It is generally

recognized that any program with a set of independent processes is a candidate for

parallelization. Unfortunately, many programs exhibit complex dependency rela-

tionships which makes identification of independent processes more difficult. Misra

noted "the typical simulation algorithm does not easily partition for parallel execu-

tion" (29). Most programs are composed of a set of procedures and functions which

have either time or data dependencies (precedence ordering).

These dependencies can be identified by creating a dependency graph of the

processes to be executed. This graph represents the time and data dependencies ex-

plicitly with arcs between nodes (where the nodes are processes and the arcs represent

dependencies). Data dependencies are determined by intersecting the domain and

range of each process with the ranges of other processes. Any non-empty intersection

indicates a data dependency exists between the two processes. In contrast, the time

dependencies are identified by the control structure of the simulation algorithm and

the procedures and functions used to implement the simulation.

The data granularity used in identifying independent tasks will affect the per-

ception of the candidate program as either feasible or infeasible. For example, on a

macro scale a data structure may appear in both the range and domain of two sepa-

rate p-ocesses. At this level of observation, a dependency relation exists between the

two processes. If the same components of the data structure are used or modified

2-1

by the processes, the dependency does exist. However, if the processes use separate

components of the data structure, no dependency exists.

The overall structure of this dependency graph can have one of three general

patterns. An acyclic directed graph with multiple paths would represent a typical

discrete event simulation with no feedback. For example, a graph for a car wash

simulation might be represented by Figure 2.1. In contrast a typical time driven

source

wash wash)

sink

Figure 2.1. Dependency Graph for A Car Wash Simulation

simulation would be represented by a directed graph with at least one cycle. A sim-

plified graph of the inner loop of the BMD simulation, Figure 2.2, is an example of

this sort of graph. The final dependency graph pattern a program might have is an

acyclic single path directed graph or pipeline. This type of graph is a good represen-

tation of an assembly line, Figure 2.3. While programs with a pipeline dependency

graph may be impossible to functionally decompose, data decompositions may be

possible depending on the computational dependencies between data items and any

relaxation of data interdependencies.

2.1.2 Interprocess Communication For processes to obtain the data needed

in a distributed processing environment, some mechanism must exist to exchange

information. The hardware mechanism used is determined by the type of architecture

used for program implementation. Distributed memory systems use message passing

through interconnection networks as the means of exchanging information, while

2-2

1ASSIGN

Figure 2.2. Simplified Dependency Graph of the BMD Simulation

shared memory systems can use shared data (or message passing via operating system

features such as Unix pipes and sockets or other mechanisms) as their means of

exchanging information.

System overhead associated with communication is determined, in part, by' the

mechanism used and the way it is implemented. The Intel iPSC architectures used in

this effort provide examples of distributed meniory (message passing) systems with

and without co-processors tc handle interprocess communication. Another factor

affecting the rommunications overhead is the interconnection network of the system.

In a fully connected system the overhead for communication between any two pro-

cessors is not a function of which two processors are communicating. In a non-fully

connected system this overhead becomes a function of the number of intermediate

processors which must relay the message traffic between the two "communicating"

2-3

source

process A

process B

Figure 2.3. Dependency Graph of an Assembly Line

processors.

2.1.3 Synchronization In sequential simulation a single process maintains the

system state and executes in the order prescribed in the simulation design. No com-

putations can occur out of order and process synchronization is controlled by the

program instruction pointer. When simulation computations are distributed across

multiple processors (Multiple Instruction Multiple Data) in a parallel architecture,

the instruction pointer is no longer a dependable mechanism for coordinating com-

putational activity because each processor has its own pointer into the code it is

executing.

Synchronization is necessary between processes which must share or exchange

information. In distributed memory systems, the only dependable means of syn-

chronizing computation is through message passing. Clock skew between proces-

sors makes the use of system count down timers or wall time unpredictable as a

synchronization mechanism. Since the goal of parallel processing is to apply more

computational resources to a problem, minimizing synchronization overhead is one

of the primary activities of problem decomposition. The desired result is that each

2-4

process spends more time computing rather than synchronizing with other process.

Shared memory systems generally have less overhead for process communication and

synchronization.

2.1.4 Deadlock Deadlock is usually defined as a state where all processes in

a set of processes are blocked; and each is waiting for an event which can only be

caused by another process in the set (33:275). This requires the conditions of mutual

cxxOlus. 7, hcd and wa4 re.,rc-s, no reoource precmption, aid cii, iJai ,112. Fc,

simulations, deadlock refers to the situation where the simulation does not progress

(simulation time does not increase).

Deadlock in discrete event simulation is primarily due to the message traffic

between logical processes and the use of event times to advance the simulation clock

of each logical process. Each process is expected to process events in simulation time

order.

The "conservative" programming paradigm requires all processes which receive

events from more than one other process to wait until each input process sends a

time stamped event. This guarantees that the process receives no events from "the

past". Each process keeps track of the time of the last event received from each one

of its input processes. The loca. simulation time for each process is the minimum

time of the last events received from each of its input processes. When tbi2 minimum

time changes, the process updates its local simulation clock to this new minimum

by processing any pending events with times less than the new simulation time. In

this case, deadlock occurs when a feedback loop exists between logical processes in

the simulation. A similar situation occurs when a process never receives an event

from one of its input processes. While the simulation may be correctly simulating

the system and no events should be generated by the specific input process, the

logical processes "down stream" from the process will not be able to advance their

simulation time. Current researh in "conservative" methods of deadlock avoidance

2-5

concentrates on variants of the Chandy-Misra Algorithm (7).

The "optimistic" paradigm avoids deadlock by allowing each process to proceed

based on the basis of its current event queue. If an event from the "past" arrives,

a process will "roll back" to the simulation time in the past when the event should

have arrived. Once the roll back is accomplished, the process continues processing

events from the new simulation time. "Optimistic" methods require large amounts

of data to be saved to allow each process to roll back to the "past". In addition,

the same events may be processed several times by a logical process due to roll

backs. Among the "optimistic" methods currently being researched is Jefferson's

"time warp" system, which creates anti-messages during process roll back to "undo"

processing which should not have been done based on the just-arrived message (25).

Deadlock in time driven simulations is usually the result of an incorrect pro-

gram design. The global simulation clock ensures progress. Each process depends

on the concept that all simulation processes are at the same simulation time so mes-

sages and data from the "past" cannot be sent by other processes. An improperly

designed simulation allows the global simulation time to be incremented before some

process has finished its processing for the previous simulation time.

2.1.5 Load Balance Ideally, a parallel program will be distributed so each

processor will have the same computational load. Assuming no serial dependencies,

increases in overhead, or improvements in efficiency for a parallelized algorithm, we

would expect a speed up of N from a system with N processors with perfect load bal-

ance. The uniformity and consistency of the computations to be performed will often

determine whether it is possible to decompose a simulation to equitably distribute

the load. In the worst case, a single process will perform nearly all computations,

resulting in that process limiting the speed up attainable. If the longest running

process distributed in the simulation performs I of the processing in the sequentialf

simulation, the maximum speed up for the parallel simulation will be f.

2-6

Load balance is not a static condition for many computations. This compli-

cates the process of partitioning the program among the available processors. The

programmer must decide whether to statically partition the problem or to attempt

to perform dynamic load balancing. Static load balancing simplifies the problem

by assuming that some average load balance will provide a suitable speed up. The

alternative is to periodically rebalance the computational load. This dynamic rebal-

ancing introduces additional overhead in determining both when to rebalance, and

ho, to repartiti,6 the program.

2.1.6 Determinism Sequential programs are deterministic. For a given se-

quence of input data, output results are identical for any number of trials executed.

When a program is distributed, the instruction pointer no longer provides the con-

trol needed to ensure consistent results between trials. Whenever computations or

data items capable of influencing program output can be processed in a random

order, a plgram is no longer deterministic. When designing a parallel program or

parallelizing an existing program, it is necessary to determine the importance of a

deterministic output. From a testing standpoint, a deterministic program provides

an easier platform for determining whether a program or simulation is valid.

In many simulations determinism is necessary, because the systems being simu-

lated are deterministic systems. For such simulations program design is complicated

when using a data decomposition to distribute the simulation, because data may be

received in a non-deterministic order from replicated processes. Adding determinism

to a non-deterministic simulation may add to a distributed simulation's computa-

tional, synchronization, or space requirements depending on the mechanism used to

provide the required determinism.

2-7

2.2 Conservative, Optimistic, or a Middle Ground

Parallel computations are generally thought of as being either conservative or

optimistic, based on the "quality" of information used for any computation and the

mechanism used to compute the correct result. Conservative computations do not

proceed until the data to be used in the computation is guaranteed to be correct.

No incorrect values are generated at any point in the computation. For parallel

computations this means all processes must wait until all input data is correct be-

fore proceeding. In contrast, optimistic computations continually execute based on

the "best" available information at the time of computation. Since inputs are not

guaranteed to be correct before computation begins, system state checkpoints are

maintained to permit rollback to known correct states when erroneous processing is

detected. Optimistic processes perform their computations at their own pace, with-

out waiting for other processes; however, potential rollbacks may mean a process will

perform the same computation a number of times.

As Reynolds suggested, a "spectrum" of possibilities exist between these two

extremes (39). Since feedback loops tend to reduce the inherent parallelism in a

simulation, a method of reducing the number of these loops or their frequency of

traversal could increase the options for parallelization. Feedback loops and the in-

formation they contain can be implicit in a sequential system. A common global

memory will have only one possible value for any given data item. In time driven

simulations the simulation state is often maintained between time steps by data

items in a global memory. In computations where the new simulation state is a

function of the old simulation state, these state variables provide implicit feedback

information for each AT.

However, some simulations contain ne.ted loops where the values of these global

variables are modified within each time interval. The program state at the end of

the time interval may depend on the transitions of the state variable within these

nested loops. When a simulation is parallelized on a distributed memory system,

2-8

interprocess communication becomes the only method of making sure data item "A"

on processor 1 is the same as data item "A" on processor 2. If feedback loops are

eliminated or reduced in frequency during program parallelization, what happens if

the "A" used by processor 1 is not the "current A" for the simulation? Is it possible

to perform computations based on imperfect knowledge without requiring rollback?

What effect will these computations have on the simulation results?

This becomes an important issue when dealing with a data decomposed sys-

tem where replicated processes send intermediate results to a single non-replicated

process. If the single non-replicated process changes a "global" variable this is equiv-

alent to a critical section of a parallel program. If the non-deterministic completion

order e the replicated processes can effect the results of the simulation, what can

be done? Among the several options which exist are the following:

" Provide a synchronization mechanism to generate intermediate results in a

deterministic order.

" Accumulate the results on the non-replicated process, waiting until all repli-

cated processes have terminated, and process in deterministic order.

" Do not replicate the process computing intermediate results.

" Accept the non-deterministic output and correct based on some stored state

space in a process later in the computation.

" Accept the intermediate results as correct and continue processing. (This will

only apply in a case were determinism is not a necessary condition for the

simulation.)

" Determine an acceptance criteria for the intermediate results and accept only

those which meet the criteria.

In some cases eliminating feedback results only in unnecessary computations being

performed. In others, it may drastically affect the results of computations. While

2-9

elimination of these loops offers the potential of removing a synchronization require-

ment from a program, the purpose of the loop and its effect on computations must

be clearly understood.

2.3 Time Driven vs. Event Driven

The major difference between time driven and event driven simulation is the

mechanism for updating each process's simulation time, and the predictability of

interprocess communication. Since time driven simulations operate in lock step,

the communication between processes occurs in simulation time order based on the

global simulation time. Each process in a discrete event simulation maintains its

own simulation time. Communication in this type of environment is less predictable

because messages may arrive in the past, or a process may wait for a message which

never arrives before incrementing its local simulation time (a form of deadlock). Dis-

crete event simulations eliminate the synchronization required by a global simulation

clock, and attempt to speed up simulation execution by not simulating time intervals

where nothing happens. The cost of this improved efficiency is that the resulting

simulation may deadlock.

An advantage the synchronization of time driven simulations provides is that

it reduces the possibility of program deadlock. Therefore, the mechanisms used to

prevent deadlocks in an discrete event simulation are not present to add to the over-

head of the simulation (specifically the overhead of null messages, deadlock detection,

deadlock recovery and other techniques of "conservative" methods, or the overhead

of checkpoint storage and process rollback associated with "optimistic" methods).

2.4 Parallelizing Existing Simulations

2.4.1 Deciding to Parallelize The purpose of a simulation is probably the

greatest single factor to be considered in the decision to parallelize an existing simu-

lation. A simulation which, for whatever reason, must take less time to execute is a

2-10

candidate for parallelization. This is especially important in time critical simulations

such as weather forecasting, or real time or interactive simulations such as aircraft

simulators. Unfortunately, while "parallel" compilers exist, they are capable only of

recognizing parallelism inherent in the source code (primarily looping constructs),

and therefore depend on the programmer's ability to incorporate these structures

into the code. Monolithic data structures (those not indexed by the loop variable)

within loop constructs will usually defeat automated attempts at parallelization.

When the target system is a distributed memory architecture, parallel compilers will

most likely be unavailable to assist in distributing the simulation.

2.4.2 Level of Effort The decision to parallelize requires that the cost of the

effort be recognized. The effort depends on condition of the existing simulation,

its complexity, its level of docL.nent.ation, and the suitability of its algorithms for

parallelization. Another factor influencing the effort required is the familiarity of the

programmer(s) with the simulation.

According to Glover:

The single, most important, overriding tradeoff issue to be considered is
one of efficiency. Does the programmer rewrite large amounts of the pro-
gram to obtain a large speed up factor, or does the programmer rewrite
some of the program to obtain a modest speedup [sic] factor? (16:1)

One obvious goal in parallelizing an existing simulation is to reuse as much of the

sequential code as possible when parallelizing. The two primary advantages to this

are a reduced level of effort and a presumed level of confidence in the validity of the

existing code. Another issue which can add to the complexity and level of effort is

language compatibility. If the language of the original simulation is not supported

on the selected parallel architecture, the entire program must be converted. In

addition, language extensions used in the sequential simulation may not be supported

on the parallel architecture, adding to the work needed to parallelize the program.

2-11

In any event, the level of effort expended in parallelizing a simulation should be

commensurate with the expected benefits of that parallelizat ion.

2-12

III. Parallel Hardware Architectures

This chapter describes the architectures used in this research. Message passing

mechanisms are explained for each of the distributed memory architectures because

the mechanism used is one of the major factors effecting overall system performance.

Memory locks are desc:ibed for the shared memory architecture because they are

most likely to cause similar performance problems for access to critical sections of

shared memory.

3.1 The Intel iPSC/1

The Intel iPSC/1 Hypercube is a distributed memory architecture system. It

consists of a host processor and up to 128 processor nodes configured in a bypercube

topology. In a hypercube, each one of the n processing nodes has a direct connection

to log2n other nodes, and these connections are determined by the node identifier

or address. Each node 0 to (n - 1) is connected to all nodes whose addresses differ

in one bit position when expressed in binary. Figure 3.1 is a representation of a 16

node hypercube topology. All communication between the nodes in the iPSC/I is

via connected nodes, and if non-connected nodes exchange information, it must pa-ss

through and be processed by (at least for routing purposes) intermediate nodes. This

means communication overhead is a function of the number of intermediate nodes

between communicating processes.

Each processing node in the iPSC/1 is an Intel 80286-based processor. Node

processors are configured with Intel 80287 math co-processors, 512K bvtes of RAM,

and eight bidirectional communication channels, managed by dedicated Intel 82586

communication co-processors (seven channels for point to point node communica-

tions and one for a shared Ethernet channel to the host processor). Message size

in the iPSC/1 is limited to 16K bytes, and the total number of 1K byte blocks

in transit (sent but not yet received by the application program) is limited by the

3-1

1315

7

I.'

I..

\77.

I9

• 14 1
.

10 i8

Figure 3.1. Interconnections in a 16 node hypercube

hardware configuration of the particular system. Messages larger than 1K by'te are

automatically broken apart, sent, and reassembled at the destination node.

Node to node communication can be viewed as two distinct processes: sending

and receiving messages. Sending a message from a node application process involves

the following steps:

" The CPU determines the "next node" for routing the message

" The CPU directs the appropriate 82586 LAN controller to start sending the

message

" The LAN controller reads the message out of RAM

* The LAN controller sends the message out on the point to point serial link

3-2

e The LAN controller initiates an interrupt to the CPU to report that the mes-

sage was sent

When a message is received at a node the following processing steps occur:

" A LAN controller receives a message from another node

" The LAN controller writes the message into RAM

" The LAN controller interrupts the CPU to report the receipt of a message and

provides the address of the message to the CPU

* The CPU checks to see if it is the destination node, if not then the message

must be sent using the steps outlined above

" If this is the destination, the CPU checks all processes running on the node to

see if a process has a pending receive request matching the received message

"type". If such a process is found, the message is transferred from a system

buffer to that process's receive buffer. If no receive is pending or the type does

not match, the message remains in the system buffer.

Message routing can be represented by Figure 3.2. Names on the left side of the

diagram represent names of the appropriate protocol layers from the seven laver

International Standards Organization's (ISO) Reference Model of Open Systems

Interconnection (OSI), while names on the right indicate node component involved

in that layer. (The seventh layer, the presentation layer, is not needed in internode

communication.)

The host processor is also an Intel 80286-based machine with an 80287 math

co-processor, and it controls the configuration and operation of cube processors.

Each node communicates with the host processor via a shared Ethernet channel,

controlled at the host end by an Intel iSBC 186/51 communication board. All I/O

between the node processors and the external environment (i.e., printer, screen, and

disk I/O) is provided by the host processor.

3-3

Applicatio n PROCESS-TO-PROCESS

Session Intermediate

Nodes

Transport T 0 o00 N L T ,Messagelnlr/

I DL Han.'ler

Network NNN /

DataLink82586

i PL 82586Link]

Figure 3.2. Message Routing in the iPSC/1 (21:3-5)

3.1.1 AFIT iPSC/1 Configurations AFIT has two iPSC/1 systems. One

system is designated as an iPSC/D5VX, and is a 5 dimension (32 node) hypercube

equipped with optional vector processor boards (one per node). The other system

is an iPSC/D5MX, which is a 5 dimension hypercube with an optional 4 Megabyte

memory board for each node.

.2 The Intel iPSC/2

The iPSC/2, an 80386-based system, represents Intel's second generation hy-

percube architecture. While processor interconnections remain in a hypercube topol-

ogy, the host and node processor configurations and capabilities have changed. Of

particular interest is the mechanism for sending messages between nodes. Each node

processor contains a "Direct Connect Module" which

allows a message to be passed directly from any node processor to any
other node processor, passing through only the communications modules
without having to pass through intermediate node processors. This is
done by a logic switching arrangement. (22:2-16)

3-4

More time is spent setting up a message for the Direct Connect module then is spent

routing messages through the intermediate nodes' Direct Connect modules. This

results in near uniform message latency between all nodes in the iPSC/2 whether

they are physically connected or not. Node processors are involved only when they

are the source or destination of a message, which increases the available time to

process the user application.

3.2.1 AFIT iPSC/2 Configuration The AFIT iPSC is a 3 dimension (8 node)

hypercube. While Intel offers optional memory and vector boards as well as a "disk

farm" for additional mass storage, the AFIr system is not configured with any of

these options.

3.3 The Encore Multimax

The Encore Multimax is a fully connected, shared memory architecture, com-

posed of the following system components:

" Main system bus, called the Nanobus

" A system controller

" Processor cards (I to 10)

" 1/0 channel cards (1 to (11 minus number of processor cards))

" Mass storage cards (1 to 8) of 4 or 16 megabyte capacity

Component interconnections are shown in Figure 3.3. System components are

classified as requesters if they request use of the address bus but do not respond to

requests for data. Processors cards and I/O channel cards are all requcsters. Memory

cards, which do not issue requests for the address bus but respond to requests for

data, are classified as responders. The system controller acts as both a requester and a

responder. I/O channel cards provide the Encore Multimax with access to Ethernets

3-5

oFP OCP trnet - cP

Processor 1/0 Disk
Cards Channel ControlCards Cards

~ Tape
- Control

Card

_ _ _Nanobus

OP

System Shared
Control Memory
Card Cards

Figure 3.3. Encore Multimax Functional Diagram (13:2-4)

and mass storage devices. The other components are discussed individually in the

following paragraphs.

The Nanobus is a fast bipolar bus, which provides a data transfer rate of 100

megabytes per second. This bus provides up to 12.5 million bus "transactions" per

second, separate parity- protected address and data busses, a separate 14 bit wide vec-

tor interrupt bus, a separate parity-protected control bus, bus transaction interleav-

ing, pipelined bus interfaces, and processor-memory interlocked operations (13:2-3)

The system controller performs the following functions (13:2-6):

9 Supervises hardware fault diagnosis

* Perfoims environmental monitoring (power supplies and temperature)

* Provides interface to front panel switches and indicators

3-6

" Provides local and remote console terminal interface

" Mediates bus arbitration

" Generates bus timing signals

" Provides interval timing and time-of-year clock

" Controls system start-up, builds a configuration map of existing system re-

sources, sizes memory, and assigns optimum interleaving characteristics

Processor cards are comprised of two independent National Semiconductor

15 MHz NS32332 processors, each with a private 64K bytes cache memory, an

NS32382 15 MHz Memory Management Unit for 32-bit physical address genera-

tion, and a floating point accelerator unit using a Weitek WTK1164 multiplier and

a WTK1165 Arithmetic Logic Unit.

Each shared memory card provides 4 or 16 megabytes of random access memory

in two independent banks. Every card supports 2-way interleaving between banks

and 4-way interleaving between cards, permitting 8-way system interleaving. The

base address and interleaving characteristics of each card are set under software

control at system startup. Any byte in memory can be used as a multiprocessor

"lock". Atomic Nanobus operations provide the ability to set or reset the locks. A

processor testing the state of a lock reads the contents into its cache, and subsequent

reads are from the cache, until the value of the lock changes. As a result the Nanobus

and memory card are not loaded by processes waiting for a lock to change state (13:2-

12).

3.3.1 AFIT Encore Configuration The AFIT Encore system has 8 processor

boards for a total of 16 processors. The system also has 32 Megabytes of main

memory and one I/O channel card.

3-7

IV. The Ballistic Missile Defense (BMD) Simulation

This chapter describes the simulation used as a test vehicle for this research.

A general description of the programs operation is followed by an analysis of the

sequential program.

4.1 Use as a Test Vehicle

The BMD simulation, developed by DESE Research and Engineering, Incor-

porated, was used as the test vehicle for all applications programs developed in this

research. This simulation was developed as a research task sponsored by the Defense

Advanced Research Projects Agency (DARPA) under ARPA Order 3643 (12). The

program exhibits characteristics which make functional, data, or functional/data

hybrid decompositions possible.

4.2 Introduction and Description

DESE Research and Engineering developed two basic simulations. The first

simulation (designated BMDSIM-P) generates detailed numerical data for defin-

ing optimal physical parameters and performance requirements for Directed Energy

Weapon (DEW) systems. The second simulation (designated BMDSIM-G) provides

a graphical interface to display attack scenario simulation results (12:2-2). The

BMD simulation which forms the basis for all programs developed in this effort was

a preliminary version of these simulations. It simulates a ballistic missile attack

and the subsequent engagement by directed energy weapons. The term BMDSINI

will be used for all subsequent references to this baseline simulation and to generic

attributes of all derived simulations.

The original simulation was designed with the following guidelines and con-

straints:

4-1

* DEW systems were limited to concepts employing ground-based lasers and

space-based relay mirrors

" BMD models only boost-phase defense engagements against strategic ballistic

missiles

A booster engagement occurs in BMDSIM when the following conditions are met:

1. A booster is in boost phase and above a minimum engagement altitude

2. A geometrically feasible laser-to-booster link exists involving either one or two

space-based mirrors

3. All defense elements in the feasible link are available for engagement

4. Sufficient time remains before booster burnout to complete the engagement

(based on time to position defensive elements and time required to destroy the

booster)

If any of these four conditions are not met, the booster is not engaged. Figure 4.1

depicts the geometry of an engagement.

The time to start an engagement is determined by the time to orient the

laser and mirrors towards the booster. This time is the result of the orientations

at the end of the last engagement for each defensive element, and the individual

slew rates for the angles between the last engagement and the new engagement.

The engagement duration is determined by the distances between objects (RRPM,

RRM, and RRBM), the orientation of the laser (RPANG, divergence from vertical

orientation increases atmospheric attenuation of energy), and the incident angle of

the beam as it strikes the booster (RIANG). These are the major parameters used to

determine the engagement time required to destroy the booster. For a more detailed

discussion refer to (12).

The overall functional structure of BMDSIM is represented in Figure 4.2. Ta-

ble 4.1 equates these function descriptions to the FORTRAN function names used

4-2

Orbiting Orbiting

RLeJa Mirror Battle Mirror

Figure 4.1. Ballistic Missile Defense Simulation Engagement Parameters (17)

in subsequent data flow diagrams and partitioning diagrams. This same structure

showing the equivalent FORTRAN function names is shown in Figure 4.3.

BMDSIM models the threat missiles in terms of "centerline" trajectories rep-

resenting threat "tubes" or..lusters of ballistic missiles launched from a given launch

complex to a specified target area. It is assumed that all numbers and types of ballis-

tic missiles entered as threat data are modeled by their centerline trajectories. The

boost phase trajectory is based on curve fits of detailed ICBM and SLBM trajec-

tory simulation data. Overall trajectory and orbital modeling after powered flight is

based on IKeplerian equations. For further discussion, the reader is referred to pages

4-5 to 4-15 of (12).

Laser sites are modeled as fixed installations. All lasers are of equal power

(beam intensity), and project the maximum power to the first relay mirror when it

is oriented perpendicular to the surface of the earth.

Mirrors are generated by BMDSIM based on the following parameters:

4-3

, ammmililmii i~i~i~iiiliiiiinll i ~iiilim Ilili I a

Initialize Initialize loop
Mirror Booster over all
Orbits Tajectories b

De err one all
Mirr or

Poi t ions d

Dpetermine all
Mirror.Laser Determine

Ranges Angles Booster
Position

la~e Asinments

mapon

Tsinmer~
* The nmber o mirrororbit
* Te umbr f mrrrs n achori rrBs

* The true anoaly offset beweenamirrorsn adentobt.i ain

loop

Assign , n ofte rs
Wea&Pon

Ti ment

• ~ ~ ~ ~ ~ ~ e allubr fmrorobt

measured counter clockwise from the Greenwich Meridian

If the true anomaly and initial right ascension are not provided, they are randomly

generated. All mirror orbits are modeled as circular, geocentric orbits of unifor, alti-

4-4

Weaon

Table 4.1. FORTRAN Function - Logical Function Equivalence

SBMIT Initialize mirror orbits
BOSTIT Initialize trajectory for a single booster

SBMPOS Determine all mirror positions for a given time

RRPVIS Determine visibility, ranges and angles for all mirrors and a sin-
gle laser

TRAJ Determine booster position and velocity vectors
RRBVIS Determine visibility, ranges and angles for all mirrors and a sin-

gle booster
MIRVIS Determine all geometrically feasible links for a laser booster pair,

by matching laser-mirror visibility, booster-visibility, and deter-
mining visibility and ranges between mirrors

LNKCAL Calculate the time of engagement start and duration for all fea-
sible links for a laser booster pair

LNKORD Sort the set of feasible links for a given booster and all lasers
based on time of completion for an engagement

ASSIGN Assign weapons for the best link where all defensive elements
are available for the engagement (not previously assigned)

tude. Visibility between mirrors and lasers is determined by zenith angle constraints

(RPANG in Figure 4.1), and calculations are completed for all mirrors which are in

the laser's hemisphere and not currently engaged against a booster. Mirror-booster

visibility adds an additional constraint; if the incident angle (RIANG in Figure 4.1)

is less than a predefined minimum, the link is not considered.

4.3 Analysis of the Sequential Simulation

The sequential BMDSIM was analyzed for potential parallelism and execution

performance. In keeping with the idea of reusing as much code as possible in par-

allelizing an existing simulation, high level subroutines are viewed as the smallest

possible functional decomposition units. The modular approach DESE Research and

Engineering took in designing the source simulation made this view of simulation

functions possible. While reducing the set of decompositions considered, this system

4-5

loop
SBMIT BOSTIT over 4,11

booster.

RRPVIS T:II Aj

RRe ,l VI

lo o
o o p

l~~sove NK A?

booster.
ASSIGN

Display -

Weap on
Assignmfent

lIncremerrt

Simultiion
Time

Figure 4.3. Functional Structure of BMDSIM with FORTRAN names

view simplified the task of identifying data dependencies and needed control struc-

tures. The primary devices used for high level analysis of this program were the

data flow diagram in Figure 4.4 and the calling tree of the original program shown

in Figure 4.5. Data structures represented in Figure 4.4 are defined in Appendix B.

A graphical display function was added to BMDSIM in a previous effort at

AFIT. This function allowed simulation results to be displayed on a color Sun 3

workstation. This function was excluded from the sequential analysis. Though an

Ethernet interface package exists to allow a Sun workstation to act as the host

4-6

XL UTA
XLO T D ETA 0

XL AT DRAO

XLO0N BOSTIT SBMIT
TFBOT

BGAM 'BO

B ORA
A BO RA TA RM

ITYPE

TSrLT
NLE SEPA

' -V
N

NS B NA

ETA

TLAS
LMIR T I

,
R P

L A S M I V S P P Z E N T H T
TTG RB

IBMOP A ta F F

poesrfrTiS/,n iilrpcaeeit fothiP /2rteEnr.

I N P O ,t.. XLAMDA
D LI C F L LNK--- A DEIAM

NMLIK S UPLFAC

NLASE LKR WESEPAV

SLATC
"NMIRL AXMAXJ

PHASE XKF AXMIN

DALASM

Figure 4.4. Data Flow Diagram of Sequential BMDSIMI

processor for the iPSC/1, no similar package exists for the iPSC/2 or the Encore.

All analysis emphasized the non-graphical versions for consistency between architec-

tures.

The Unix profiling capability was used to determine the relative amount of

time spent in each subroutine. Profile results are summarized in Table 4.2. Program

profiling is a useful tool for determining the relative computational load for program

subroutines. Once determined, this information can be used to indicate a general

approach to take in parallelizing a program. Due to the consumption of resources

4-7

Start of simulation

read in booster, mirror, laser, and control info

call BOSTIT - initialize all booster clusters

call SBMIT - initialize space based mirrors

egin simulation time loop

SBMPOS - determine new mirror poeitions for
time T

RRPVIS - determine visibility between lasers and
mirrors at time T

egin loop over booster (clusters)

TRAJ - determine new cluster position vector

RRBVIS - determine visibility between
clusters and mirrors at time T

egin loop over lasers

MIRVIS - determine geometrically
feasible laser links

LNKCAL - determine the best "NMIRL" links
for this cluster from this laser

LNKORD - sort the best "NMLIK" links for this
cluster from all lasers

ASSIGN - select the best laser link
to assign to thin cluster based on
min engagement completion time

Output information and increment time

Figure 4.5. Top Level Call Tree for Sequential UMDSIM

and destruction of booster clusters in BMDSIM, the computational load varies as

simulation time progresses. Since the profiling information indicates only an average,

performance predictions based on the results are estimates only. The accuracy of

performance predictions for any implementation will also be a function of wheLher

or not the implementation is deterministic.

Figure 4.6 is a simplified data flow diagram for the BMD simulation FORTRAN

functions. This graph does not represent all of the information which the main driver

program uses for control flow during the simulation. Simulation constants and some

of the time step variables have been removed to indicate the major data structures

4-8

Table 4.2. FORTRAN Function - Unix Profile results

BMDSIM Profile Results

IV(Avg ms
Function Execution per

Time call
main 9.7
MIRVIS 51.4 37.24
LNKORD 20.9 15.49
RRBVIS 9.0 6.50
LNKCAL 5.8 4.76
RRPVIS 1.5 0.84
ASSIGN 0.6 0.20
TRAJ 0.5 0.22
SBMPOS 0.3 0.10
BOSTIT 0.2 0.07
SBMIT 0.1 0.03

required by each funtion.

The computational load in MIRVIS is the result of an exhaustive search for

feasible links. Using data item names from the source code, the search has a computa-

tional complexity of, O(NBOSTR *NLASER *((NSBAIO*NSBAIPO) **2)). Since the

predominant loop within each time step is over each booster, if NBOSTR proces-

sors were used, this search would still be O(NLASER*((NSBMO*NSBMPO)**2)).

Clearly this routine will limit the performance of any parallelization of the sequential

simulation.

The logical question at this point is, based on the analysis of the sequen-

tial simulation, why not decompose or parallelize MIRVIS? Decomposing this single

process was more complicated than was warranted by the expected benefits. The

primary result of a decomposition/parallelization of this process would be improved

performance in a functional decomposition. However, since any decomposition aimed

solely at this function wouid still have been in a loop construct nested within both a

simulation time loop and a loop over booster clusters, only a marginal benefit could

4-9

BOSTIT SBMIT

FBOT
'BO

VI B ORAT
A Trs R A ETA RM

TRAJ

AL

RBvB SBMPOS

T RBM

IZTA IRPI

TLAS

RBNMIRVIS RPANG T
TTGO E

ASSIGN

TI B M

DWELLT

Figure 4.6. Simplified Data Flow Diagram of BMDSIM without constants

be achieved by rewriting this procedure alone.

4-10

V. Implementations of the BMD Simulation

The general strategy used in developing the implementations of BMDSIM was

to begin by creating a strict functional decomposition of the original simulation for

the iPSC/1. Once this first implementation existed, subsequent implementations on

the iPSC/1 were created to represent a progression from functional to data decom-

positions of BMDSIM. The "best" implementation was then ported to the iPSC/2

system. The original intent was to also port this "best" implementation to the En-

core. However, a separate Encore implementation was created to take advantage

of the programming environment available on the Encore. The program analysis

results from the previous chapter, including profiling results, data flow diagrams,

and data structure analysis listed in Appendix B were used in developing all parallel

BMDSIM implementations.

For all the implementations of BMDSIM, the functions and subroutines created

by DESE Research and Engineering were left intact. While this limited the possible

number of decompositions, it simplified the programming task. The trade off for this

decision is the maximum obtainable speed up. Speed up is commonly defined as

Time for Sequential ExecutionSpeed up =

Time for Parallel Execution

Since approximately 50% of sequential execution time is spent in one of these subrou-

tines, speed up for a purely functional decomposition must be less than or equal to

two. For a data decomposition the maximum speed up is more difficult to determine.

A speed up limit can be estimated for any implementation based on the equa-

tion

Specd up + m ax for (5.1)

Limitm

5-1

where f, is the fraction of total computation which is sequential, f, is the fraction

of the parallelized computation performed on processor i, and N is the number of

processors. This equation is derived from Ahmdahl's Law. The sequential fraction

of computation is based on the percent of computation performed by the "main"

procedure in the sequential simulation. The fractional values used in determining

the speedup limit depend on the accuracy of the Unix profiling tool. To determine

the fraction of computation for a replicated process requires the equation

sj for 1i=i., (5.2)

where Si is the fraction of time spent in the process during sequential execution, R,

is the number of processors allocated to replicated process i, and p is the number of

processes. However, it must be noted this limit computation completely ignores any

overhead associated with process parallelization. Communication overhead for any

implementation usually increases as a function of the number of processors utilized

for the simulation. This is especially true in a system like the iPSC/1, where messages

between non-adjacent nodes interrupts the processing on intermediate nodes. In

addition, load balance for a replicated process is assumed to be perfect, and this is

seldom the case for MIMD systems. Additionally, there are two reasons why - is not

realistic. First, a certain percentage of process i is independent of the data and will be

replicated Ri times. Secondly, by basing the speed up limit calculation on the largest

fraction of computation, perfect overlap between processes is assumed. Therefore,

this speed up limit is only a very gross estimate of the potential performance of an

implementation.

5.1 Description of iPSC/I Implementation //1

The first implementation of BMDSIM was designed to isolate each BIMDSIM

function on a separate processor. The decomposition is a purely functional de-

composition, and communications traffic was expected to be very heavy. Since ap-

5-2

proximately 50% of the computational load for BMDSIM occurs in one function,

performance of this implementation was expected to be poor.

Node *4
BOSTIT &

TRAJ
oTAL Node . 2

SBMIT &
TGRB VBSBMPOS

LNKORD DWELLT

Figure 5.1. iPSC/1 Node Assignments and Communication for Implementation #1

5.1.1 Decomposition Process This decomposition was a completely functional

decomposition of the original simulation. The main reasons for creating this decom-

position were to study the performance of BMDSIM's sequential functions and the

effect of completely distributing the control structure of the sequential simulation.

Figure 5.1 represents the functional breakdown of this simulation, showing communi-

cation patterns, node mappings, and approximate percentage of computational load

for the simulation processes, excluding the host proccss and its initialization mes-

5-3

sages. No attempt was made to limit the number or size of messages in the system.

Since the DESE Research and Engineering functions were left intact, these func-

tions were used to partition the simulation for parallelization. This decomposition

maintains the deterministi, behavior of the sequential simulation.

5.1.2 Parallelization Characteristics The major factors effecting the antici-

pated performance of this simulation are:

" Increased overhead to initialize the system, including time to load processes

into nodes and to pass initialization data to node processes.

" Added overhead for interprocess communication between the nodes.

" Removed feedback loops associated with global data structures from within

time steps, which caused continued computation after resources were no longer

available.

" Majority (approximately 51%)of computations are performed in a non-repli-

cated process.

" Added inefficiency by spreading loop structures on multiple processors.

The speed up limit for this implementation, based on Equations 5.1 and 5.2 is

approximately 1.7.

5.2 Description of iPSC/I Implementation #2

This implementation of BMDSIM was designed to reduce both the number

and size of messages passed from implementation #1. The decomposition is a purely

functional decomposition, with the majority of the computations being performed

by a single node. Computational overlap in this implementation occurs only between

the determination of feasible assignments, and the consumption of resources during

that assignment.

5-4

Figure 5.2 shows the assignment of BMDSIM functions to processes and node

processors. In addition, the approximate percentage of computation time from the

sequential program profiling is included, though the percent of sequential program

control derived from the "main" routine is ignored.

I. s sent Nd

to host
BOSTI TRNode - 3

TAL SBMIT & SBMPOS

TiTG
to hoit F1

IZTAB

t. host

IASSGN

S Node 0 DWNode

LNKOR & ASIG] IRRBVIS, I RPVIS, MIRVIS,

NBPCR*

Figure 5.2. iPSC/1 Node Assignments and Communication for Implementation #2

5.2.1 Decomposition Process This decomposition was an attempt to reduce

the number and size of messages in the system while maintaining a completely func-

tional decomposition of the original simulation. Figure 5.2 represents the functional

breakdown of this simulation, showing communication patterns and node mappings

for the simulation processes, excluding the host process and it initialization mes-

sages. This decomposition maintains the deterministic behavior of the sequential

simulation.

5-5

5.2.2 Parallelization Characteristics Two versions of this implementation

were created. One version removed all feedback loops within each time step; the

second supplied feedback as defensive elements were consumed (when there was an

engagement in the time step). The removed feedback loops represented global data

items used to control program computation in the sequential simulation. Neither ver-

sion of this implementation was expected to execute in less time than the sequential

version of the simulation. The primary reasons for this were:

* The increased overhead to initialize the system, including time to load processes

into nodes and to pass initialization data to node processes.

* The added overhead for interprocess communication between the nodes.

• The removal of feedback associated with global data structures from loops

within time steps, which caused continued computation after resources no

longer available (first version only).

• The fact that a majority (approximately 68%)of computations are performed

in a non-replicated process.

Additional messages were added to provide the time step synchronization required in

a time driven synchronization since the number of clusters for which all calculations

are performed is not constant. Using Equations 5.2 and 5.1, the limit of speed up

for this implementation is under 1.3, (-1h).

5.3 Description of iPSC/1 Implementation 113

Implementation #3 of BMDSIM was the first hybrid decomposition of the se-

quential program. The term "hybrid" indicates that it has characteristics of both

functional and data decomposition. It represented an effort to combine major compu-

tational functions within a single process which could then be replicated. A decision

was made at this point to allow non-determinism in the simulation. This decision

was based on the methods previously discussed fo maintaining determinism when

5-6

processes are replicated, and the difficulties in implementing these methods on the

iPSC/1 (limited memory, and the increase in coding complexity, see page 2-9). As-

signments are made as feasible assignment information arrives at node 0 from nodes 5

through the total number of processors. No synchronization mechanism was created

to guarantee node 0 processed this information in the same order as the sequential

simulation.

Node * 3
BOSTIT & &I es sent

TRAJ to host

I% TAL Nod,
TIP SBMIT &

to host TTG R VB SBMPOS

Node-. 4
RRBVIS

RB

FigureA 5.3 iPC/ Node Asinet an2omncto o mlmnain#

IZTLB RRPVIS

LLAS 2%

to host IR
P R AN

RBEN Node-. 5+

Noe- MIRVIS, LNKCAL

ASSIGN BCT & LNKORD ,

Figure 5.3. iPSC/1 Node Assignments and Communication for Implementation #3

5.3.1 Decomposition Process This hybrid decomposition required the cre-

ation of a mechanism for distributing computations to each of the replicated pro-

cesses. Though the control structure for this is only marginally more complicated

than the control structure required without a replicated process, the number of mes-

sages in the system is increased due to the increased number of processing nodes.

5-7

Since the iPSC/1 has a limit on the number of messages in the "sent but not yet re-

ceived" state, intermediate messages in the simulation were combined where possible

to decrease the amount of message traffic as much as possible. Figure 5.3 is a repre-

sentation of this implementation showing approximate computational load and node

mapping for simulation processes, excluding the host process and its initialization

messages.

5.3.2 Parallelization Characteristics The primary differences between this

simulation and the previous one are:

" The majority (approximately 79%)of computations are performed in a repli-

cated process, increasing the amount of overlapping computations.

" Permitting non-deterministic behavior avoided additional synchronization, mem-

ory requirements, and control logic in system processes.

* Combined messages to reduce the number of messages in the system.

Since approximately 79% of the computational load for this implementation was con-

tained in the replicated process, the limit for speed up determined by Equations 5.2

and 5.1 is 5.4 for both 32 and 16 processors, and 2.8 for 8 processors. The limit for

32 and 16 processors is the same because RRBVIS is the process which determines

these limits.

5.4 Description of iPSC/1 Implementation #4

Implementation #4 of BMDSIM was also a hybrid decomposition of the se-

quential program. It represented an effort to reduce the number of messages in the

system by replicating RRPVIS (laser-mirror range and visibility calculations). This

function was selected due to the size of the data structures it generated. Each data

structure generated by this function is 48,000 bytes in length, and iPSC/1 mes-

sages are limited to 16K bytes. In implementation #3, three messages were required

5-8

Node 2
BOSTIT & . sent

TRAJ to host

I% TAL Node -I
TIP SBMIT &

to host TTG VBSBMPOS

R

Nooe- ,4-

LMIVI, IR IS

ASSIGN NKCAL, & LNKORI

Figure 5.4. iPSC/1 Node Assignments and Communication for Implementation #4

to distribute each data structure to the other processing nodes which required the

information.

5.4.1 Decomposition Proccss This decomposition was a direct modification

of the previous implementation. No new messages were requred, and few existing

messages needed re-routing. A comparison of Figure 5.3 and Figure 5.4 reveals the

similarities between these two implementations.

5.4.2 Parallelization Characteristics The primary difference between this sim-

ulation and the previous one is the reduction in the nui,icr of messages. The com-

putational load for the replicated process increased by approximately 3% over the

previous implementation, with the addition of RRPVIS. Approximately 82% of all

5-9

computations are performed in the replicated process.

Since approximately 82% of the computational load fir this implementation

was contained in the replicated process, the limit for speed up determined by Equa-

tions 5.2 and 5.1 is 5.4 for both 32 and 16 processors, and 3.3 for 8 processors. As

with implementation #3, the limit for 32 and 16 processors is the same because

RRBVIS is the process which determines these limits.

5.5 Description of iPSC/1 Implementation #5

Implementation #5 of BMDSIM was another a hybrid decomposition of the se-

quential program. This decomposition extended the pattern of combining BMDSIM

functions into a single replicated process. Message traffic was reduced by incorpo-

rating RRBVIS into the replicated process, and making a "supervisor" node process

which allocated work to the replicated processes. This node process had no explicit

equivalent in the sequential program, but incorporated some of the control structure

within "main".

5.5.1 Decomposition Process This decomposition was a direct modification

of the previous implementation. The major difference was the size and type of infor-

mation included in the messages between the "supervisor" node and the replicated

nodes. This message included only the number of boosters assigned to a replicated

process, and the booster identifiers (indices into booster information data structures).

5.5.2 Parallelization Characteristics This implementation was expected to

perform nearly as well as the previous implementation. With the addition of RRB-

VIS, the size and number of messages was reduced from implementation #4(only one

message from the supervisor process to each replicated process for any given time

step, rather than one message per booster cluster). However, the computational load

for the replicated process increased by approximately 9% over the previous imple-

5-10

Node -2
BOSTIT alosn

TRAJ to host

TP1% TAL NodeTIP SBMIT&
to host TTG R VB S -k

Node - 3

IZTA B TL1 E

LLAS
to host M

whic anoN RRBVIS, RRPVI

ASSIGN MIRVIS, LNKCAL,

& LNKORD

Figure 5.5. iPSC/1 Node Assignments and Communication for #mpl6mentation #5

mentation. Approximately 91 of all computations were performed in the replicated

process.

The limits for speed up determined by Equations 5.2 and 5.1 are, 7.7 for 32

processors, 5.8 for 16 processors, and 3.1 for 8 processors. These are ideal limits

which cannot be reached in practice.

5.6 Description of iPSC/1I mpl~rnentation #i6

This hybrid decomposition of the sequential BNIDSIMI program combined addi-

tional functions into the replicated process of BMDSIMl. Functions BOSTIT, TRAJ,

SBMIT, and SBMPOS were added to the replicated process.

5-11

.lso sent Node - I
to host VB

Supervisor RB
'TIP

R
e r to osit

IZTAB TLSVEC

to host

Node 2+~BOSTIT, TRAJ,

Node - 0

ASSIGN NBPCR RRBVIS, RRPVIS,I [IRVIS, LNKCAL.

LI S G & LNKORD

Figure 5.6. iPSC/1 Node Assignments and Communication for Implementation #6

5.6.1 Decomposition Process Tis decomposition was a direct modification

of the previous implementation. All the booster and mirror position functions are

distributed to the replicated processes. The cher node processes received all booster

information from the process on node 2. The messages were sent to the "supervisor"

process, then ASSIGN node, and finally the host. This message traffic ordering

was used overlap "supervisor" process computation with the commanication time

required to send the information to ASSIGN node and the host. Tihe replicated

process also sent mirror position data to the host. The "supervisor" and ASSIGN

processes did not require mirror position information.

5.6.2 Parallchization Characteristics The computational load for the repli-

cated process increased by approximately 1% over the previous implementation, with

the addition of BOSTIT, TRAJ, SBMIT, and SBMPOS. Approximately 91% of all

computations were performed in the replicated process. However, two additional

5-12

processors are available for the replicated process, and message traffic at simulation

clock synchronization was reduced.

The limits for speed up determined by Equations 5.2 and 5.1 are 7.9 for 32

processors, 6.2 for 16 processors, and 4.0 for 8 processors.

5.7 Description of iPSC/1 Implementation #7

This hybrid decomposition of the sequential BMDSIM program attempts to

introduce more computation communication overlap in the simulation. Functions

SBMIT and SBMPOS are placed in the process with ASSIGN, to overlap the com-

munication of mirror position with the start of booster engagement calculations in

the replicated processes.

.Jo sent

to toiLt
Supervisor

TIP HOSTIT &TRAJ
RLB

Figure 5.7. iPSC/1 Node Assignments and Communication for Implementation #7

5.7.1 Decomposition Process This decomposition was a direct modification

of the previous implementation. All the booster and mirror position functions are

distributed to 'he processc3 requiring the position information. Mirror position func-

tions were added to ASSIGN node, though mirror positions are not required on the

5-13

node. This was done to make ASSIGN node the process which sends all position

information to the host processor, because it does not interact with the replicated

processes until they have completed processing of at least one booster cluster. This

delay provided the time to send booster and mirror positions to the host.

5.7.2 Parallelization Characteristics All improvements for this implementa-

tion were the result of understanding when processes waited for communication, and

what functions could oe performed at those times. Each process required a synchro-

nization mechanism to increment its local simulation clock. Since it was possible

that a replicated process will have no boosters to perform calculations for, the syn-

chronization message was required. Updated engagement information was sent at

the end of each time step, indicating resource availability times for defensive ele-

ments. A process which completed calculations for all its boosters waited for this

update information before proceeding with the next time step. In the previous im-

plementation all processes waited for this information before proceeding. With this

implementation, the supervisor computed its booster position data for the next time

interval while the replicated processes determined new mirror positions before each

waited for this update information.

The percent of processing performed by the replicated process is unchanged

from implementation #6. The limits for speed up determined by Equations 5.2 and

5.1 are 7.9 for 32 processors, 6 2 for 16 processors, and 4.0 for 8 processors.

5.8 Description of iPSC/2 Version of Implementation #7

This implementation was a direct transfer of the iPSC/1 version. Any differ-

ences in performance between the two versions was a direct result of the differences

between the method each system uses to pass message traffic (see Chapter 3). Speed

up limits are independent of the architecture used for an implementation, and are

the same as for the iPSC/1.

5-14

5.9 Description of iPSC/I Implementation #8

This hybrid decomposition of the sequential BMDSIM program eliminates the

supervisor process by statically allocating specific booster clusters to each replicated

process.

R LAo Gen
TIP to host
RB
VB

IZTAB
LMIRS' TLAf
LLAS\
to hos

Figure 5.8. iPSC/1 Node Assignments and Communication for Implementation #8

5.9.1 Decomposition Process This decomposition was a direct modification

of the previous implementation with the "supervisor" node eliminated. Each repli-

cated proceso performed calculations for a subset of the boosters. No replicated

process performed these calculations for adjacent booster indices. This represented

an attempt to balance the computational load, based in part on the sample data set

used. Adjacent indices tended to follow the same trajectories if they are of the same

booster type and have nearly the same launch latitude and longitude. As a result,

boosters with adjacent indices were often engaged in the same simulation time step,

leaving a node with little or no computation for the next time step.

5.9.2 Paralielization Characteristics Speed up for this implementation was

expected to be slightly less than for implementation #7. Though an additional

processor was available for replicated processes, as the simulation progressed, load

5-15

balance would decrease. In the worst case, some processes would have no compu-

tations to perform while others would never have any boosters engaged (destroyed)

and would continue to perform all their calculations.

The limits for speed up determined by Equations 5.2 and 5.1 are 7.9 for 32

processors, 6.3 for 16 processors, and 4.4 for 8 processors.

5.10 Encore Implementation for the BMD Simulation

5.10.1 Implementation Description This implementation relied on the paral-

lel constructs in the Encore Parallel FORTRAN language. Each data parallel "DO"

loop in the sequential program was implemented as a parallel "DOALL" construct.

Figure 5.9 provides a graphical depiction of the "parallel" sections of code, and the

sequential sections, where shared memory is updated.

5.10.1.1 Decomposition Process The Encore Parallel FORTRAN com-

piler provided automated parallelization of code. However, the existence of variables

which were not indexed on the loop variables prevented the dutomated parser from

recognizing the data parallelism in the loc over booster clusters in the sequential

code. Therefore, this section of code was manually modified to create a parallel

section of code with appropriate local variables. The ASSIGN function became a

critical section of code because the values of the defensive elements needed to be

shared over all processors.

5.10.1.2 Parallelization Characteristics This implementation was equiv-

alent to iPSC/1 implementation #7 in that feasible laser-mirror-booster assignments

were determined and ordered in independent processes, while resources were coin-

mitted in a "critical section" of code. This critical section of code is identified by

using the Encore Parallel FORTRAN construct "Critical Section". Conceptually,

iPSC implementation #7 and this Encore implementation are identical with the

critical section equivalent to iPSC Node 0 process and the parallelized "DOALL"

5-16

loops equivalent to all other iPSC processes. The general strategy of the simulation

was to compute the feasible assignments for each booster in parallel and then to

commit resources in the critical section of code.

The speed up limit figures for the Encore implementation will prove to be an

even less accurate predictor of performance if Equations 5.1 and 5.2 are used. This is

due to the isolation of parallel computations from sequential computations in these

equations. Speed up limit figures for a shared memory processor can, instead, be

estimated by

Shared

Memory 1 (5.3)

Speed up R,

Limit

Where Si is the fraction of total computation performed by process i during sequen-

tial execution, Ri is the number of processors performing replicated process i, and p

is the number of processes. For processes not in parallel sections of code, N, is unity.

Table 5.1 summarizes the results of Equation 5.3 for BMDSIM on the Encore.

The absolute speed up limit for the simulation, using Equation 5.3 is 8.991,

and is determined by the maximum number of missiles in the simulation (NBOSTR

100). Theoretically, this implies a speed up of 9 can never be achieved with this

simulation, regardless of the number of processors applied to the problem.

5.10.1.3 Exploitation of the Hardware The Encore operating system

provides a run time environment conducive to parallel processing. When a program

is compiled using a "parallelizing compiler" the resulting machine code checks an

environment variable at program startup, and creates the number of identical pro-

cesses determined by this environment variable (up to the number of processors in

the system). This provides each image of the process, with access to the shared vari-

5-17

Table 5.1. Encore Parallel BMDSIM Speed up Limits

Processors Speed up Limit
1 1.000
2 1.817
3 2.496
4 3.070
5 3.561
6 3.987
7 4.359
8 4.687
9 4.978
10 5.238
11 5.473
12 5.685
13 5.837
14 6.011
15 6.169
16 6.315

ables, and eliminates the overhead required to create processes dynamically during

run time. As each parallel section of code is entered (a "DOALL" construct), these

processes are activated to perform a portion of the processing.

The shared memory architecture allowed program state variables to be shared,

and assigned either in non-parallel sections of code, or in "critical sections" of the

parallel code ("critical section" refers to those sections of parallel code which modify

shared variables). No messages needed to be passed, and the critical sections of code

were controlled via the lock mechanism described in Chapter 3.

5.11 A Final Note on Parallel Implementations

The apparent bottleneck for all implementations of BMDSIM is the process

containing the procedure "MIRVIS". Though the decision was made to keep the

original sequential functions intact in the parallel versions, a more realistic approach

5-18

for functional decomposition of this simulation would be to restructure all sequential

functions to reduce the amount of computation performed in any single process. This

restructuring implies changes to control and data structures used by each function

to reduce the data dependencies. Any shared data items or nested loops would also

be targets of any restructuring and rewriting of the original simulation.

5-19

00

loop
BOSTITover all

SBMITboosters

lloop
overove allRRV

lasers
bo st r

50

VI. Empirical Results and Analysis

This chapter summarizes the results of each implementation of BMDSIM. All

execution times used in computing speed up are average times for the execution of

four or more trials of the simulation. Unless otherwise noted, execution times include

all phases of processing, including loading processes into processor memory for the

distributed memory systems and creation of processes in the shared memory system.

Speed up figures are derived from the execution of the sequential simulation

executed on an equivalent processor. For the iPSC/I and iPSC/2, the host proces-

sor was used to obtain sequential execution data. Since all Encore processors are

identical, the sequential simulation was executed on a single Encore processor, after

being compiled with the non-parallel FORTRAN compiler.

Overall execution timing information was collected using Unix system calls

to determine the start and stop time of program execution. This provided a clock

resolution of one second. The implementation overhead measurements were obtained

from a one one-hundredth second resolution clock on the iPSC/1. No similar wall

time function call was available on the iPSC/2 (host processor CPU time is the only

available call); therefore, no overhead information was collected. Encore overhead

measurements are obtained from a one second resolution wall time function call.

Though several iPSC/1 implementations were executed with a Sun 3 work-

station operating as the "host" processor, these execution times are not included

with the overall performance measurements in this chapter. The graphical interface

provided by the Sun consistently required approximately one additional minute for

initialization over the overhead figures for non-graphical trials. Aside from this addi-

tional overhead, there was no significant difference between trials using the iPSC/I

host processor and using the Sun 3 workstation as the "host".

6-1

An efficiency term is determined for each implementation, and is defined as

Speed up (6.1)
Efficiency = Number of Processors

This efficiency value indicates performance relative to linear speed up.

6.1 iPSC Implementation Results

A complete set of results for all implementations is contained in Appendix C.

Results for all iPSC implementations are summarized in Table 6.1. The speedup

figures include all initialization overhead. The Efflizm, column in Table 6.2 represents

the efficiency of the given trial with respect to the estimated limit from Equations 5.1

and 5.2. The limit value replaces the number of processors in Equation 6.1.

6.1.1 iPSC/I Implementation #1 This implementation of BMDSIM has never

run to completion. Based on partial executions of the implementation, a complete

trial would require approximately 2.5 hours to execute. This implementation was

not expected to perform well due to the additional overhead of message passing, and

the use of FORTRAN functions from the original simulation as the logical processes

implemented.

6.1.2 iPSC/I Implementation #2 Program performance was as expected.

The primary problem with this functional decomposition was the lack of overlapping

processing. Based on the results of sequential program profiling, approximately 68%

of the computational load is in a single process, and only 22% of all other processing

can occur "in parallel" with this process due to data dependencies. The addition

of feedback within simulation time intervals improved the overall performance of

this implementation by reducing the number of wasted computations on the heavily

loaded node.

6-2

Table 6.1. Summary of iPSC Implementation Results

Imple- Number Overhead Speed Speed up
mentation of Pro- Time up vs. Efficiency Efflmt

cessors (seconds) Limit Sequential

#1 8 1.7 0.2 0.025 0.118
#2 no fdbk 4 56.88 1.3 0.532 0.133 0.409

#2a fdbk 4 58.28 1.3 0.988 0.247 0.760
#3 32 61.40 5.4 1.552 0.049 0.287
#3 16 60.96 5.4 1.916 0.120 0.355
#3 8 59.92 2.8 0.924 0.116 0.330
#4 32 56.92 5.4 2.644 0.083 0.490
#4 16 56.68 5.4 2.674 0.167 0.495
#4 8 55.80 3.3 1.834 0.229 0.556
#5 32 55.74 7.7 2.520 0.079 0.327
#5 16 55.50 5.8 1.906 0.119 0.329
#5 8 71.20 3.1 0.506 0.063 0.163
#6 32 45.88 7.9 3.430 0.107 0.434
#6 16 45.24 6.2 3.118 0.195 0.503
#6 8 44.36 4.0 1.834 0.229 0.459

iPSC/1 #7 32 52.16 7.9 4.529 0.142 0.573
iPSC/1 #7 16 50.62 6.2 3.428 0.214 0.553
iPSC/1 #7 8 49.72 4.0 1.762 0.220 0.441
iPSC/2 #7 8 4.0 1.929 0.241 0.482

#8 32 52.70 7.9 4.061 0.127 0.514
#8 16 5U.86 6.3 3.057 0.191 0.485
#8 8 52.52 4.4 1.633 0.204 0.371

6.1.3 iPSC/1 Implementation #83 This was the first version of BMDSIM

with a replicated process, and which produced non-deterministic results. One of the

major performance considerations for the iPSC/1 is process-to-node mapping. This

implementation was designed to dynamically determine the number of available pro-

cessors, and to use that number. As a result, the number of multihop messages in

the system increases as the number of processors increases (see description of mes-

sage passing in the iPSC/1 on page 3-2). These multihop messages interrupted the

processing on intermediate nodes, which reduced the amount of time spent working

6-3

on the portion of data allocated to those nodes. This explains the degradation in

performance between the 16 and 32 processor trials.

6.1.4 iPSC/1 Implementation #4 The additional 3% of computation added

to this replicated process resulted in one additional processor being available for

replicated processes. Speed up figures increased 70.4%, 39.6%, and 98.5% for 32, 16,

and 8 processors respectively. However, the multihop messages still case degraded

performance between the 16 and 32 processor trials.

6.1.5 iPSC/1 Implementation #5 This implementation was not expected to

perform better than the previous one. The work load in the replicated process

increased without a corresponding increase in the number of processors available to

execute the replicated process. Approximately 91% of the computational load for

this implementation was contained in the replicated process. The execution times

measured while running on 8 processors varied from less than 30 minutes to more

than 2 hours for the same program, data set, and host processor loads. The reason

for this large variation in execution time is unknown.

6.1.6 iPSC/1 Implementation #6 Only three unique processes were identi-

fied in this implementation, allowing up to 29 processors to execute the replicated

process. Approximately 92% of the computational load for this implementation

was contained in the replicated process. The improvement in performance for this

implementation over implementations #4 and #5 is the result of the trade-offs be-

tween computational load, communication, and number of processors for replicated

processes. The increase in computation in the replicated process was offset by a

reduction in communication and an increase in the number of processors available

to execute the replicated process.

6.1.7 iPSC/1 Implementation #7 This implementation out performed im-

plementation #6 because communication and computation timing was taken into

6-4

account in the decomposition. This resulted in greater overlap between commu-

nication waits and computation in the node processes. As in implementation #6,

approximately 91% of the computational load for this implementation was contained

in the replicated process.

6.1.8 iPSC,12 Implementation #7 Speed up results are determined with re-

spect to the sequential version of BMDSIM executed on the iPSC/2 host processor.

The extra communications overhead on the iPSC/1 apparently accounted for ap-

proximately 9.5% percent of the execution time. This figure would be expected to

increase as the number of processors in the simulation increases due to multihop mes-

sage traffic Since the only iPSC/2 system available has 8 nodes, it is not possible

Lo check this conjecture.

6.1.9 iPSC/1 Implementation #18 This implementation was a static data

decomposition of BMDSIM. As a result of the changing load balance of BMDSIM,

this implementation will be load balanced only at the start of the simulation. As

with implementation #7, approximately 91% of the computational load for this

implementation was contained in the replicated process, whici, executed on all but

one of the available node processors. The lack of load balance explains the lower

speed up figures when compared to implementation #7, even though an additional

processor is available to execute the replicated process.

6.2 Encore Implementation Results

Performance results for the Encore parallel implementation of BMDSI.N are

summarized in Table 6.2. Speed up results were determined with respect to both

the sequential version of BMDSIM and to the parallel version executing on a single

processor. For the hypercube implementations this comparison was not performed

because changes to the number of processors used below the number of unique pro-

cesses in each implementation meant a change to the source code.

6-5

Tablc 6.2. Encore Parallel BMDSIM Results

Number Speed up Speed
of vs. up Efficiency Effcicncyhm,

Processors Sequential Limit
Sequential 1.000 _

1 0.919 1.000 0.919 0.919
2 1.449 1.817 0.725 0.797
3 2.195 2.496 0.732 0.879
4 2.364 3.070 0.732 0.879
5 2.770 3.561 0.554 0.778
6 3.219 3.987 0.537 0.807
7 3.661 4.359 0.523 0.340

8 3.292 4.687 0.412 0 702
9 3.336 4.978 0.371 0.670
10 3.826 5.238 0.383 0.730
11 3.634 5.473 0.330 0.664
12 4.056 5.685 0.338 0.713
13 3.900 5.837 0.300 0.668
14 4.105 6.011 0.293 0.683
15 4.024 6.169 0.268 0.652
16 4.428 6.315 0.277 0.701

The Efficiencyli,i column in Table 6.2 represents the efficiency of the given

trial with respect to the estimated limit from Equation 5.3. The results in this

column follow a generally decreasing pattern, which is as expected. As the number

of processors increases, the likelihood of bu3 collisions and time spent waiting to enter

the critical section of code, had a greater impact on the simulation performance. The

speed up limit equations developed for shared memory architectures provide a more

accurate indication of potential performance than those developed for distributed

memory systems. A complete set of results is contained in Appendix C.

6.3 A Comparison of Architectures

6.3.1 Performance Figure 6.1 is a graph displaying the relative performance

of the three architectures used in this effort, for a comparable implementation (iPSC

6-6

implementation #7). The Encore Multimax provides more than 1.5 times the speed

up than either of the iPSC implementations. When overhead figures are taken into

account, as in Figure 6.2, the difference is less dramatic, but it still exists.

I I I I] !

Linear Speedup

Encore iPSC/1 #7

4

Speed up 3

2

0
0 5 10 15 20 25 30

Number of processors

Figure 6.1. Speed up Graph for Comp-rable Irnplemen'tticns nn Diff'rert Archl-
tectures

The difference in speed up between these architectures is determined by three

major facto s. The times included in the speed up computations change the resulls

obtained. Including overhead t ines in speed up calculatioAs further distinguishes

the performances olbtaied by the architectures studied here. This also provides a

better comparison to the sequential version of the program by identifying all ex-

ecution overh!-ad incurred in parallelizing a prograii. The second factor afft cting

performance figures for these architectures is the difference between m ssage passing

67M

6 /

Linear '-peedup

4

Speed up 3

2

II I II

0
0 5 10 15 20 25 30

Number of processors

Figure 6.2. Speed up Graph for Comparable Implementations Exclding Initializa-
tion Overhead

overhead and bus contention overhead. Figure 6.3 represents the total overhead for

each implementation in seconds.

The data used to plot Figure 6.3 are in absolute time (seconds), which amplifies

the differences between the processor speeds. Figure 6.4 provides a comparison of

these overhead times normalized with respect to their execution times. This graph

indicates that overhead is primarily a function of the number of processors. While

it would be tempting to conclude that the fraction of processing needed for over-

head is independent of architecture, the accuracy of the time measurenezts became

significant (approximately ±2% for 16 processors) for the Encore as execution time

decreased.

The final factor is the time required to load prograns into the appropriate

6-8

70

60 #2a #-

#5#2 #
50 :7

#6

40
Overhead

(sec)
30

20

10

Encore

0 5 10 15 20 25 30 35

Number of processors

Figure 6.3. Overhead Times for Implementations

processor. Figure 6.5 is a graph the average of this time for all iPSC/] implemen-

tations, and clearly shows this time is a function of the number of unique processes.

The number of processors used does not affect this number in the iPSC systems

because it is possible to load all node processors with a single process. No similar

information is included for the Encore since it creates multiple processes at program

initialization.

If there were a clear winner in this effort, it would be thc shared memory

architecture. Bus and memory contention had a negligible affect on performance

6-9

12 #7

10
8#

8 #6
#4

Overhead % 6

Lncor #3

4

2
#2
I I I , , I

0
0 5 10 15 20 25 30 35

Number of processors

Figure 6.4. Normalized Overhead Times (% of Execition Time)

when compared to message passing overhead on both iPSC systems. This was due

in part to the faster speeds of the "Nanobus" when compared to the Ethernet channel

connections between nodes of the hypercube systems.

Shared memory architectures are limited in the number of processors which can

be accommodated due to the increase in memory bandwidth requirements with the

number of processors. The basic issue is what is "adequate" perf, ce, and can

it be achieved with the number of processors available in a shareo ,nemory system.

Since distributed memory systems do not require the memory bandwidth of shared

memory systems, greater numbers of processors can 'be appiied to a given problem.

6.3.2 Programmning Environment The shared memory system provided a much

nicer programming environment. Many of the headaches of process control and

6-10

35

30

25

20

Seconds
15

10

5

I I I I !

0
0 1 2 3 4 5 6

Number of Unique Processes

Figure 6.5. Average Time to Load Node Processors versus Number of Unique Pro-
cesses

communication were handled by the operating system, since it must handle these

problems for system processes. The parallel FORTRAN compiler removed process

creation and ccmmunication ain additional distance away by providing constructs to

identify both parallel and cr;tical sections of code. Program parallelization involved

identification of the sections of code to be parallelized, the shared and local variables

in those parallel sections of code, and any critical sections of code within the parallel

sections. Program scalability to the number of processors was handled by setting a

run time environment vaiiable. There was no need to map processes to processors.

Program execution was stable and predictable.

The iPSC systems, on the other hand, required creation processes, message

traffic, and '-ntrol structures to handle messages in the proper order. It was nec-

6-11

essary to understand the limitations of the message handling system and the node

processors in order to implement, the simulation. Though a distributed memory

system maps to functionally decomposed systems more easily (since it is based on

the concept of separate communicating process), the iPSC systems were prone to

inexplicable lock ups and unpredictable pe-rformance. Trials often would not execute

to completion two times in a row, and system processing lights would indicate all

nodes were waiting for communication, though BMDSIM will not deadlock unless

message traffic is lost. In addition, though BMDSIM is non-deterministic in its com-

putational load, the deviation in execution times between trials was much more than

expected for implementation #5.

6.4 Guideline Development

Figure 6.6 shows the speed up graph, including initialization time, for all the

iPSC/1 implementations. The relative performance of each implementation generally

improves as the number of processors increases. This is very much as expected,

and indicates data parallel programs possess greater potential for parallelism, than

functionally decomposed programs. The primary reason for this is that a large data

parallel simulation will generally provide a greater number of processes after data

decomposition than after functional decomposition. A simulation with a la.rge data

set, where each element of the set is processed using the same functions, vill be a

good candidate for data decomposition.

The purely functional decompositions of this study show the affects of this

property. Their speed up results are relatively poor, due to the dependencies and

synchronizations needed for their implementation. However, as noted at the end of

the previous chapter, the decision to keep the functions defined in the original sim-

ulation severely limited the performance of the functional decompositions. There is

no reason to believe the relative performance obtained in this research is an inherent

property of functional decompositions. However, since data decomposition can be

6-12

5#7

Linear Speedup

4

#6

3

Speed up #5

2#

3

o#2a

*#2

.#1
I I ,,I I

0
0 5 10 15 20 25 30

Number of processors

Figure 6.6. Speed up Graph for iPSC/1 Implementations

developed using existing functions, they generally require less effort to parallelize

than functional decompositions.

Based on this information, parallelization guideline number one is:

Guideline One: Consider data decompositions before functional decompo-
sitions when the original simulation has a large decomposablh data struc-
ture.

Another thing to note about Figure 6.6 is the relative performances of imple-

6-13

mentation #1 with and without feedback. This is case where, since feedback reduces

the computational load. and the process receiving the feedback is computationally

bound (approximately 68% of all processing), feedback is a good thing. Therefore,

guideline number two is:

Guideline Two: Understand the effect of feedback on the computation
before eliminating feedback loops.

While not always an option, feedback loops which maintain current values of "global"

data structures may be eliminated or reduced ii frequency in order to reduce sinMu-

lation message traffic.

The computational load in BMDSIM is not static, and depends on the avail-

able defensive elements and on the identification of boosters which have not been

destroyed. Figure 6.7 shows the relative progress of the sequential simulation and

implementation #7 on the iPSC/1. A constant slope line on this graph indicates a

uniform computational load over simulated time.

The instantaneous speed up graph in Figure 6.8 represents the changes in

computational load for BMDSIM and its affect on program parallelization efficiency.

The measurement of "instantaneous speed up" (proposed by Wieland) graphi-

cally depicts these changes in the computational load and the improvement provide,

by parallelization (41). Instantaneous speed up is defined as the ratio of derivatives

dt dt.,,g

IrW =g) " __d (6. 2)
dt, dtm

dg

where

g = measured Global Virtual Time = Simulation Time

taq = real time for sequential simulation

t" = real time for n processors

6-14

2000

Sequential

1500

Real Time
(sec) 1000

500

iPSC/1 #7

0
0 50 100 150 200 250 300

Simulation Time (sec)

Figure 6.7. Progress of Sequential Simulation and Implementation #7 (32 nodes)

on the iPSC/1

Though originally proposed as performance metric for simulations running un-

der the "time warp" paradigm, instantaneous speed up reveals similar information

about any parallel simulation where a global simulation time can be defined. The

primary benefit of instantaneous speed up is as an indicator of portions of simulation

time where speed up is limited (3).

The form of this graph follows expectations. The relatively low speedup regions

at each end of the graph reflect those portions of simulated time where there are no

booster clusters within the engagement window (that is they have not reach minimum

engagement altitude, or they have burned out). The fluctuations in the central region

of the graph correspond to the changes in computational load which can be attributed

to relative availability of defensive elements at ea,:h increment of simulation time.

6-15

20

15

Speed up
10

5

IIII I

0
0 50 100 150 200 250 300 350

Simulation Time (sec)

Figure 6.8. Instantaneous Speed up for one 32 node trial of Implementation #7 on
the iPSC/1

The large spike at approximately 265 simulation seconds is a result of the engagement

requirement that the engagement complete before cluster burnout. At that point in

the simulation feasible links are determined for all remaining booster clusters, but

few or no engagements meet this requirement. The variations in computational load

for BMDSIM are not only time dependent they also depend on the data partitioning.

Figure 6.9 depicts the performance difference between static and dynamic data

partitioning for BMDSIM. The result of a static data partition is that simulation load

balance worsens as simulation time increases and processors have all their boosters

6-16

destroyed. The efficiency of replicated processes is reduced by load imbalances, as

displayed in Figure 6.10. The dynamic partition data is from implementation #7,

with N-2 replicated processes, where N is the number of processors. The static

partition data is from implementation #8, with N-I replicated processes.

5I I I I !

Linear Speed up

I i a I C

Figure 6.9. Dnamic versus StaticPriong

3

Speed up

2

0
0 5 10 15 20 25 30 35

Number of Processors

Figure 6.9. Dynamic versus Static Data Partitioning

A guideline appropriate for this observation is:

Guideline Three: When load balance varies with time over a partitioncd
data set, dynamic allocation of datc, items to processors will improvc
performance.

Note that this guideline is caveated by the ratio of replicated processes to data items

in the partitioned data set. If data were partitioned with one data item per processor

there would be no difference between static and dynamic partitioning.

6-17

.35

Efficienayic
.25

Efficiency .2Sai

.1 5

0.05

0 5 10 15 20 25 30 35

Number of processors

Figure 6.10. Replicated Process Efficiency in Static and Dynamic Data Partitioning

Other guidelines, which are not so readily apparent from the results, are derived

r observations ' ".. th ih ,- .entations:

Guideli, Four: Combine messages whenever possible; the numbur of
messages tends to be more important than their size, and communication
is more expensive than computation.

Assuming the iPSC systems are representative of the class of distributed memory

systems, communications overhead is extremely important. Combining message re-

duces system requirements between application processes, with regard to memory

and, depending on the message passing mechanism, processing time. In addition,

6-18

since most architectures are not fully connected, the effect of message traffic on

intermediate processors must be minimized.

Guideline Five: Overlap communication waits with computation.

This guideline can be drawn directly from a comparison of the results for imple-

ment.tions #6 and #7 on the iPSC/1. If it is possible to predict when a process

will be waiting for communication (for example, at a clock synchronization point

in a time driven simulation), perform any computations possible for the next clock

interval. This requires independence between the computation and the message in

the pending communication.

Guideline Six: Minimize critical sections of code.

If a critical processing task or critical .2ction of code requires a large fraction of

processing time, this process will limit the speed up possible through parallelization.

Therefore, in both distributed and shared memnory systems, it is desirable to minimize

critical sections of code in order to reduce the time for any process to occupy the

critical section (for distributed memory systems critical code becomes . separate

process or a synchronization message).

Guideline Seven: Determine whether the application requires determin-
ism, and if not, what the performance trade-off is for determinism and
non-determinism.

This guideline is applicable to data decomposed systems which have a critical section

of code. If determinism is required, mechanisms must be created to ensure that

regardless of the order messages are received from replicated processes, t1he messages

6-19

are processed in the "proper" order. These mechanisms will usually increase the

space or processing requirements of parallelized program.

Guideline Eight: For existing simulations, understand how the dccision
to use existing code will limit pare llelization options.

This guideline addresses the "speed up limits" computed for all implementations,

and the partitioning options available when existing functions or subroutines are

used. If one of the existing subroutines requires a large fraction of total processing

time and cannot be replicated to provide data parallelism, that process is a limiting

factor in the performance of any parallel implementation. In the case of BMDSIM.,

changes in the control structures and data structures combined with changes to

MIRVIS, LNKCAL, LNKORD, and ASSIGN would have provided better speedup

than changes to any single subroutine. On the other hand, the decision to redesign

existing code to make it "more parallel" must be made with the understanding

that the effort required in producing a parallel version of the program increases in

proportion to the amount of code to be redesigned. In addition, the r-designed code

will require more testing.

Guideline Nine: A simple model or equation for predicting purforma7?c(

can indicate the relative merit of two possible decompo ns, but this is
not an absolute indicator of performanc.

The speed up limit model used in this effort provides only a rough estimate

of potential performance. Such a model can be used to compare the relative merits

of competing decompositions before the effort is expended in implemenie g t,',

Though it may be inaccurate in predicting the performance of any specific inplenen-

tation, a model which provides results proportional to actual perfornalice would be

invaluable. No evidence exists to support any claims a, to the speed up limit niodcl's

6-20

proportionality to actual performance. The accuracy of the speed up limit model

is depicted in Figure 6.11 for the Encore implementation. Figure 6.12 shows the

relative accuracy of the speed up limit model for the best il'SC/1 implementation.

7I 1 I I I I I I

6

4

Speed up

3

2

0
0 2 4 6 8 10 12 14 16

Number of processors

Figure 6.11. Actual Speed up versus "Speed up Limit" for the F~icore

Finally, based on the architecture comparison of the previous section:

Guideline Ten: If program scalability to a large number of processors is
not required, use a shared memory architecture.

Shared memory architectures will provide an easier environment in which to work.

They will also have less overhead. However, current technology limits the number

of processors in shared memory architectures to orders of magnitude less than dis-

tributed memory systems. Though not a major factor in this effort, some simulations

6-21

7

6
5 / Actual

5

Speed up 4

3

2

1

0
0 5 10 15 20 25 30

Number of processors

Figure 6.12. Actual Speed up versus "Speed up Limit" for iPSC/1 Implementa-
tion #7

are more logically suited to a message passing, distributed memory architecture with

a large number of processors. The primary problem in these cases is finding a decom-

position which balances the communication and computational requirements of the

simulation. The large computational load in BMDSIM was sufficient to overwhelm

the communication requircments during performance testing.

6-22

VII. Conclusions and Recommendations

7. 1 Conclusions

Parallel processing offers the potential of increased program execution speed by

distributing program computation across multiple processors. Though this aspect of

parallel programming is widely accepted, there is no such agreement on the method

or approach to take in distributing a program. When parallelizing an existing sin-

ulation program, additional issues must be addressed with respect to the amount of

effort to be expended in the parallelization process.

This objective of this thesis effort was to develop a set of guidelines for par-

allelizing existing time driven ,jmulations. The general approach was to use an

existing time driven simulation to investigate the issues and options associated with

program parallelization, and to use the empirical results from this investigation to

develop the guidelines. The developed guidelines are a reflection of the simulation

used to develop them and, until they have ben. ,allilted by applying them to other

simulations, they represent an analysis of the results obtained. The guidelines are

contained in Appendix A.

The major accomplishments of this effort can be defined as follows:

" This effort provided the first documented "head-to-head" comparison of dis-

tributed memory architectures and shared memory architectures for a single

application. The shared memory architecture used, though limited in the po-

tential number of processors by memory bus bandwidth, provided a much

better programming environment and less total system overhead. The results

presented in Chapter 6 clearly demonstrate the advantages of shared memory

architectures for comparable numbers of processors.

" Program decomposition is one of the major decisions to be made in program

parallelization. The results of the various implementations for distributed

7-1

memory architectures demonstrated the advantages and disadvantages of data

decomposed systems and functionally decomposed systems. The decomposi-

tion selected will determine the performance of the simulation, especially for a

computationally intensive simulation. Though discrete event simulations were

not investigated in this effort, this results should be equally applicable to dis-

crete event simulations where each process acts on a similar data structure (the

"colliding pucks" problem for example (4)).

" For distributed memory architectures, the method of dealing with "shared"

mepmorv str "-,e, r ". cquC1 ial simulaiu l can uraOt.'I;a'I dty acu L Le vvvr-

all performance of the parallelized simulation. The "feedback" loops in the

BMD simulation implemented shared data structures from the sequential sim-

ulation on the distributed memory architecture. The frequency of this feedback

will influence not only program performance, but also program determinism,

depending on the manner in which the shared structures are used (program

control vs program computations)

" Program determinism becomes a major issue with parallel programs. A sequen-

tial program often derives much of its deterministic behavior from the control

of the program instruction pointer. Sequential programmers often rely on this

mechanism implicitly to provide deterministic behavior. When a program is

parallelized this implicit control is absent, and it is up to the programmer to

either accept the non-deterministic behavior of the parallelized program or to

provide addition.. ,.,chanisms to ensure deterministic execution. Determin-

ism comes at the c.. f memory space, additional computation, or both; but

non-determinism introduces problems in program testing and accuracy.

* The entire parallelization process is a sequence of trade offs between perfor-

mance and effort. Probably the largest single factor involved in this decision is

the question of how much sequential code to use in the parallelized program.

The decision to use existing code determines the control and data structures

7-2

needed in the parallel program, limits the number of potential decompositions,

and to a large extent will determine the maximum speed up any parallelized

program will achieve.

The analysis involved in program parallelization can lead to the identification

of deficiencies in the sequential program. If maximum program performance had

been the goal of this thesis, much of the original source code would have been re-

designed. Using original subroutines determined messages and control structures

required in the parallel implementations, and reduced the options for parallelization

and potential speed up.

7.2 Rcc,,mmcndations

There are many possible areas for continued study in the field of program

paralleiization. The following recommendations address some of the issues raised

but not addressed in this thesis.

9 Global memory structures in the sequential BMD simulation were maintained

using feedback messages in the distributed memory system. Is there an efficient

way to handle global memory structures in a distributed memory architecture?

Sequential programs using global memor r, 'ructs for control or computa-

tion must have a means of maintaining the constructs when parallelized.

What is the performance trade off? Can these structures be identified and

localized to a particular process? What methods can be used to restructure

a sequential program during parallelization to minimize the impact of such

global structures?

9 The speed up limit model presented in Chapter 5 provides only a very gross

estimate of the relative performance of two parallel decompositions. A com-

putational model which can be used to predict the relative performance of a

7-3

parallel program would be invaluable in reducing the effort involved in produc-

ing a "good' parallel decomposition of a program.

" The relative merits of static vs dynamic load balance were only partially men-

tioned in the results of Chapter 6. There is some conjecture that program load

balance is determined by the process executing on a processor rather than the

data that process is acting upon. Is dynamic data allocation a feasible solu-

tion in the cases where processes are replicated? If the process executing on a

processor determines the load balance, what are the options for process migra-

tion, dynamic process creation and deletion, and other methods of reallocating

processes to processors? What methods can bc used to detect load imba,.n,..'

" One of Lhe major activities in parallelizing BMDSIM was analyzing the sequen-

tial simulation to determine what decompositions were feasible and which ones

were likelv to provide a performance improvement. The limitations of paral-

lelizing compilers in recognizing program parallelism were briefly discussed in

Chapter 2. Currently no automated tools exist to aid in identifying potential

parallelism in sequential programs. A semantic analyzer capable of recogniz-

ing parallel constructs in general is probably not possible. However, a tool

which could help this process would be an interactive parser for identifying

variable usage and scope. For example, in BMDSIM all data structures in the

FORTRAN "COMM ON" blocks were manually identified for size and use in

calls to subroutines and procedures. A tool which could parse the source code

and determine the procedures requiring visibility to data structures would have

helped to reduce the work load.

" The guidelines developed in this effort were ba-d on results for a compu-

tationally bound time driven simulation. How applicable are the results to

communication intensive or discrete event simulations (such as digital circuit

simulation)?

7-4

e Program determinism is a major issue in parallel programning. Is there a

way to quantify the cost of guaranteeing deterministic performance in a par-

allel program? What are the affects of determinism or its lack on simulation

performance? I there any rule for when deterministic behavior is required or

desirable in program execution?

7.3 Summary

This research concentrated on the parallelization of time-driven simulation.

While many questions remain in this field of study, the results presented here pro-

vide a baseline for the considerations and concerns to be taken into account when

parallelizing a simulation. It is hoped that many of these issues and concerns can be

generalized from the framework of the BMD simulation to the area of time-driven

simulation and paraIki simulation in general.

The largest factor to consider when parallelizing an existing simulation is to

what extent existing code will be used. The decision to use existing code as a

baseline for a parallel program will have an explicit impact on the parallel design

whun existing code is used in the parallel program. However, even if none of the

original code is used, existing code used as a reference while designing a parallel

simulation will influence many of the design decisions, even if only by example.

The guidelines developed in this research do not provide step-by-step instruc-

tions for parallelizing sequential simulations. The requirements and objectives of

each simulation and the goal of the parallelization can vary so much between in-

dividual simulations that such specific instructions are not possible. Instead, these

guidelines provide the programmer with issues to be considered and ideas on direc-

tions to take in parallelizing simulations.

7-5

Appendix A. Guidelines for Simulation Parallclizatioll

A.1 General Concerns

Decisions must be made about the level of effort to be expended in parallelizing

an exist'itg simulation. There are many issues which will determine what level of

effort is required while parallelizing the simulation. These issues are not independtzit

and the decision made for one issue may affect the decisions made for several others.

Of these issues, the following are among the most important:

" What is the purpose of the parallelization? If the goal of the parallelization

is "maximum obtainable speed up", the decomposition decisions will probably

differ from goals of "larger model size" or "moderate speed up and moderate

effort".

" What is the expected performance improvement, and is it worth the level of

effort?

" What architecture is best or is available for parallelization? The architecture

used will influence the perform.ance and level of effort of the parallelization.

However, there is no choice involved when there is only one architecture avail-

able.

" Will the program be functionally decomposed, data decomposed, or will a

combination of the two be more appropriate? Replicated independent data

structures (such as array elements) must be present in the simulation if a

data decomposition is desired. Functional decompositions arc more likely to

produce satisfactory results when independent operations are performed to

obtain simulation results.

" Are there any critical sections of code? Shared memory structures introduce

complexity into any decomposition. Ideally these structures would be limited

A-1

to one logical process, but this may not be possible in a data decomposed

system. The method used to implement a critical section of code will affect

the performance of a parallelized simulation.

" Is deterministic output required or desirable? Deterministic operation is guar-

anteed in sequential simulation. Parallel implementations of this same simu-

lation may be non-deterministic depending on the algorithms and data struc-

tures used. If determinism is required the programmer must implement sonie

mechanism to ensure deterministic operation.

" Does the program exhibit heavy computational loads or are computations sin-

ple? If computational loads are heavy in simulation processes communication

overhead for distributed memory architectures will have less total impact on

parallel simulation performance. Conversely, if computations are simple it nay

be advisable to combine logical processes onto single processors to reduce 1thC

impact of communication overhead.

" What general pattern of information or control flow does the progran, exhibit?

A simulation with nested loops within the simulation time loop wiii complicate

the parallelization process. If nested loops exist, it may be necessary to redesign

that portion of tie sinulation oi to coi rue te lictions witi dne nested

loops into larger logical processes.

" How much existing code will be used? This is one of the most important

decisions to be made. lnis decision vill irnJ, ... ,, i c... r

of the parallel simulation and the level of effort required to parallelize t:.

sequential program.

* Is the problem uniform in computation, or does computation vary with respect

to simulation time? Wide variations in computational load between parallel

processes will limit the speed up of the parallel simulation. If these variations

can be predicted or detected, some load balancing technique may be employed

A-2

to redistributed the computatic, nal load, and improve performan ce. "iI,' i-

sion to include load balancing in the simulation will increa.se the ovrhead of

the parallel simulation, but niav improve overall performanc,.

* Is the sequential simulation -good-, and if not, will any 'ffr It mahe 1,,

improve sinimation algorithins during parallelization*?

A.2 The Guidelines

The guidelines developed during tIis research are related t(, the issues rai.,,

in the previous section. They are not a set of step-by- step prcedIlT, for prtur'rar1

parallelization. Instead. they are designed to spur thought on parall.lizallonI iSS1t,'

and to provide ideas on directions to take and methods to use in prhi(cii:g a gt t(

parallelization. General guidelines:

SGuideline Ont: (Considr data decompositions befor fuinctiona it dc, mpo,,io ,,

whrn the original simulation has a larg decomposabi data s47,uclrf.

P Guideline Two: Understand th cffect of fedback on tht co7It tn tIa 1on7 h(f r'

eliminating feedback loop-

9 Guideline Three: 11hen load balance varies with time o?'vr a partitioned data

stt, dynamic allocation of data iteins to processors will in,proce p(rformanc ..

* Guideline Four: Combine messages whenever possible, th numb(r of massaqrs

tends to be more important than their size, and communication is mor 1 p n-

sive than computation.

* Guideline Five: Overlap communication wuaits with con puta1ion.

o Guideline Six: Minimize critical sections of code.

* Guideline Seven: Determine whether the application requires dett-rminism, and

if not, what the performance trade-off is for determinism and non-d terminisin.

A-3

.,uidrline IE'ight: For rxzsting simnulations, und r.stand how tt/u d(cz,,Ior to ust

extsting cod(will limit parall(iI-otzon options.

* Guideline Ninr: A simple model or equation for prr dictiny p rf,,rma c(canT

indicate the relative merit of two possible dfcomposition , hit ti., i"s 7,t ayi

absolute indicator of pfrfornance.

* Gud(line Ten: If program scalablilty to a iar numbe r of proc.,sor., I., not

requzrTd, use a shared mnmory architecture.

Basically the parallelization process is a trade off between the anm)iiii ,,f work

and time to be spent on a project and the speed up required or desired. While

performance limits will exist, the decision as to what limits are or are not importarnt

will determine what metrics are used to call an implementation successful or a failure.

A-A

Appendix B. BAID Simulation Data Strutturt,;

Table B.1. BMD Simulation data descriptions and sizes

COMMON BLOCK STRUCTURES
Name Size (bytes) Description

ITYPEA 400 vector (100), of booster cluster type used hv I i()l I
and TRAJ

NBPC 400 vcctor (100), number of boosters for each cluster uscw, to
init NBPCR running tally, and in equation to dtecrnillc
fraction of leakers

TBL 800 vector (100), time before launch for each cluster test
data=0) used to determine vulnerabilit v window for clus-
ter

SEPAV 800 vector (100), average booster separation per cluster used
in LNKCAL

XLATL 800 vector (100), launch latitude of cluster used in B TOSTII

XLONL 800 vector (100), launch longitude of cluster used in U)'STlI

XLATT 800 vector (100), target latitude of cluster used in Bl()STIT

XLONT 800 vector (100), launch longitude of cluster used in I().S;TI

BGAM 800 vector (100), RV reentry flight path angle, used in O1S-
TIT (ORBEL)

VI 2400 array (3,100), initial velocity vector from cluster lauch
returned from BOSTIT and used in TRAJ

RI, 2400 array (3,100), position vector of booster launch comph'x
returned from BOSTIT and used in BMDSI1M driver

R1O 2400 array (3,100), position vector of booster at burnout re-
turned from BOSTIT and used in TRA,1

V130 2400 array (3,100), velocity vector of booster at burnout re-
turned from BOSTIT and used in TRAJ

TBO 2400 vector (100), time of booster cluster burnout returmed
from BOSTIT and used BMDSIM driver and TtA.I

RT 2400 arrdy (3,100), position vector of target conplex ret urued
from BOSTIT and used in main

TFBOT 800 vector (100), time of flight from burnout to impact re-
turned from LOSTIT and used in BMI)SIM drive'r anl
T RA .J

B- 1

Table B.2. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)
Name Size (bytes) Description

AR 4800 array (3,3,100), transformation matrix to convert from
coordinate system with X-axis along RL vector to one
with X-axis in direction of Greenwich meridian at time
of launch, returned from BOSTIT and used in TRAJ

AR 4?0 0 array (3,3,100), transformation matrix to convert from
coordinate system with X-axis along RL vector to one
with X-axis in direction of Greenwich meridian at time
of launch, returned from BOSTIT and used in TRA.1

RBERT 2400 array (3,100), a second positional vector for each cluster
used by plotmis, with an inverted coordinate for image
perspective

TIP 800 vector (100), time of impact used by graphics routine
plotmis

RB 2400 array (3,100), position vector of booster cluster at time
T returned from TRAJ and used in BMDSIM driver,
RRBVIS, and LNKCAL (MIRGEO (VADD))

VB 2400 array (3,100), velocity vtctor of booster cluster at time T
returned from TRAJ and used in RRBVIS, and LNKCAL
(MIRGEO (VADD))

ALT 800 vector (100), altitude of booster cluster at time T

RANGE 800 vector (100), cluster range from launch

XLATP 200 vector (25), laser installation latitude us'd in POSVEC

XLONP 200 vector (25), laser installation longitude used in POSVEC

RP 600 array (3,25), laser position vector returned by POSVEC
and used in RRPVIS (VMAG, VADD, and DOT) and
LNKCAL (MIRGEO (VADD))

RSBM 8 radius of mirror orbit from surface of earth used in BMD-
SIM driver to set up value for SBMiT and SBMPOS

NSBMPO 4 number of space based mirrors per orbit used in SB1MIT,
SMBPOS, RRPVIS, RRBVIS, MIRVIS, and BMDSIM
driver

NSBMO 4 number of space based mirror orbits used in SBMIT
SMBPOS, RRPVIS, RRBVIS, MIRVIS, and BMDSIM
driver

B-2

Table B.3. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)
Name Size (bytes) Description
DELETA 8 true anomaly offset between the Kth mirrors in adjacent

orbits, used in SBMIT

XINC 8 inclination of the mirror orbits to equatorial plane used
in SMBPOS (SBMLOC)

RAO 80 vector (10), initial right ascension of the Jth mirror orbit
returned by SBMIT and used in SBMPOS

ETAO 1600 array (10,20), initial true anomaly of the Kth mirror in
the Jth orbit (J,K), returned by SBMIT and used in
SMBPOS

RA 80 vector (10), right ascension of the Jth mirror orbit at
time time T, returned from SBMPOS

ETA 1600 array (10,20),true anomaly of the Kth mirror in the Jth
orbit (J,K), returned by SBMPOS

R 4800 array (3,10,20), position vector for each orbiting mirror
at time T, returned from SBMPOS and used in RRPVIS.
RRBVIS, MIRVIS, and LNKCAL

RRBM 1600 array (10,20), range between booster cluster and the Kth
mirror in the Jth orbit (J,K), returned from RRBVIS and
used in MIRVIS and LNKCAL

RANG 1600 array (10,20), incident angle of laser on booster from Kth
mirror in the Jth orbit (J,K), returned from RRBVIS and
used in MIRVIS

RRPM 48000 array (10,20,30), range between Lth laser and the Kth
mirror in the Jth orbit (J,K,L), returned From RRPVIS
and used by MIRVIS

RPANG 48000 array (10,20,30), zenith angle between local vertical at
the Lth laser and the Kth mirror in the Jth orbit (J,K,L),
returned from RRPVIS and used by LNKCAL

B-3

Table B.4. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)
Name Size (bytes) Description
MIRR 420 array (3,35), relay mirror data for the Ith geometrically

feasible set of laser links, N = 1, orbit index J; N = 2,
Mirror index K; N = 3, number battle mirror links for
this relay mirror; (N,I), returned from MIRVIS and used
by LNKCAL and LNKCK

MIRF 9800 array (2,35,35), battle mirror data for the Ith geometri-
cally feasible set of laser links, K = 1, orbit index J; K =
2, Mirror index K; (K,I,M), returned from MIRVIS and
used by LNKCAL (LNKCK)

IASGN 12000 array (4,25,30), an array containing the best mirror as-
signments for the Lth laser (I,J,L), returned by LNKCAL
(DASET) and used by LNKORD

DWELLT 24000 array (4,25,30),an array containing the best dwell times
including slewing and tracking, assignments for the
Lth laser (I,J,L), returned by LNKCAL (DASET and
MAXA) and used by LNKORD

LIASGN 1000 array (5,50), an array containing the best mirror assign-
ments, returned by LNKORD and used by ASSIGN (SE-
LECL)

DWELLA 1600 array (4,50),an array containing the best mirror dwell
times, returned by LNKORD and used by ASSIGN (SE-
LECL)

NBPCR 400 vector (100), number of remaining boosters per cluster,
returned by ASSIGN and used by BMDSIM driver and
LNKCAL

LMIRS 800 array (10,20), used by ASSIGN to count the number of
boosters the Kth mirror in the Jth orbit is used against

LLAS 120 vector (30), used by ASSIGN to count the number of
boosters each laser is used against

B-4

Table B.5. BMD Simulation data descriptions and sizes (Continued)

COMMON BLOCK STRUCTURES - (Continued)
Name Size (bytes) Description

TMIRS 3200 array (10,20,2), returned by ASSIGN (SELECL), and
used by BMDSIM driver, RRBVIS, RRPVIS, and
LNKCAL to keep track of total time of mirror usage and
next available time for assignment

TLAS 480 array (30,2), returned by ASSIGN (SELECL) and used
by BMDSIM driver to keep track of total time of laser
usage and next available time for assignment

IENG 800 array (10,20), the booster cluster last assigned the Kth
mirror in the Jth orbit (J,K), returned by ASSIGN and
used by RRBVIS and LNKCAL

RBENG 4800 array (3,10,20), position vector of booster cluster last as-
signed to the Kth mirror in the Jth orbit (V,J,K), re-
turned by ASSIGN and used by RRBVIS (VADD, DOT,
and VMAG)

SLANG 1600 array (10,20),slew angle between the present booster clus-
ter and the previous booster cluster assigned for the Kth
mirror in the Jth orbit (J,K), retuned by RRBVIS and
used in LNKCAL

B-5

Table B.6. BMD Simulation data descriptions and sizes (Continued)

NOT DEFINED IN COMMON BLOCK
Name Size (bytes) 1 Description

S;GJR 24 vector (3), jitter for relay mirror I in micro-radians, used
by LNKCAL (RELAY)

DALASM 2400 array (4,3,25), an array of intermediate results returned
by LNKCAL (DASET) which are equivalent to DALAS
not used

JDTIME 12 vector (3), used on the SUN workstation to display wall
time

iztab 36 vector (9), used to display weapon assignment data on
the SUN, returned by ASSIGN used by ZAP graphics
routine

ORATE 8 orbital angular rate of mirrors in RAD/sec, returned by
SBMIT and used in SBMPOS

B-6

Table B.7. BMD Simulation data descriptions and sizes (Continued)

CONSTANT DATA
Name Size (bytes) Description
PI 8 3.1415926536D0

RAD 8 57.295779513D0 - used for coordinate conversions
RE 8 6378.16D0 - radius of the earth in Km
NMLS 4 50 - "maximum" number of lasers
NMIRL 4 5 - number of "best links to order in LNKORD and

LNKCAL
IBMOP 4 1 - ASSIGN battle mgmt option, assign all boosters in

cluster
IOPT 4 0 - RRBVIS and MIRVIS laser link filter option

= 0, no filter

= 1, do not consider links that have laser incident an-
gles at the target less than "ANGMIN" (does not effect
MIRVIS)

= 2, same as iopt=1 plus selects the best "LMAX" links
for further consideration based on minimizing the range
squared divided by the sine of the incident angle (does
not effect RRBVIS)

B-7

Appendix C. Implementation Results

This appendix contains tables summarizing the performance of the BMDSIM

implementations.

Table C.1. iPSC/1 Implementation #1 Estimated Results

Number Average Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential
Execution times including initialization

Sequential 2013.25 30.752 1.000 _

8 approx. 9000 N/A approx. 0.2 0.025

Table C.2. iPSC/1 Implementation #2 Results

Number Average Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential
Execution times including initialization

Sequential 2013.25 30.752 1.000
4 w/o feedback 3786.25 1.090 0.532 0.133
4 with feedback 2038.00 26.561 0.988 0.247

Typical Execution times without initialization
Sequential 1962.48 No data 1.000

4 w/o feedback 3696.64 No data 0.531 0.133
4 with feedback 1923.58 No data 1.020 0.255

C-1

Table C.3. iPSC/1 Implementation #2 Overhead Time (seconds)

Time to Comm Time Wait time Total time
Program Load to Send till Nodes I/O & Init
Version Nodes Init Data Ready Overhead

Sequential N/A N/A N/A 31.44

No feedback 26.02 7.64 25.64 56.88
With feedback 26.18 -5.96 23.86 58.28

Table C.4. iPSC/1 Implementation #3 Results

Number Average Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential
Execution times including initialization

Sequential 2013.25 30.752 1.000
32 1297.50 18.621 1.52 3._-13
16 1050.00 12.903 1.916 0.120
S 2179.25 16.300 0.924 0.116

Typical Execution times without initialization
Sequential 1962.48 No data 1.000

32 1236.10 No data 1.588 0.050
16 989.04 No data 1.984 0.124
8 2119.33 No data 0.926 0.116

Table C.5. iPSC/1 Implementation #3 Overhead Time (seconds)

Number Time to Comm Time Wait time Total time
of Load to Send till Nodes I/O & Init

Processors Nodes Init Data Ready Overhead
Sequential N/A N/A N/A 31.44

32 32.32 6.14 22.60 61.40
16 32.50 4.82 22.22 60.96
8 31.74 4.16 21.52 59.92

C-2

Table C.6. iPSC/1 Implcmentation #4 Results

Number Average Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential
Execution times including initialization

Sequential 2013.25 30.752 1.000

32 761.50 13.611 2.644 0.083
16 753.00 12.903 2.674 0.167
8 1097.75 2.681 1.834 0.229

Typical Execution times without initialization
Sequential 1962.48 No data 1.000 _ _

32 677.90 No data 2.895 0.090
16 681.30 No data 2.880 0.180
8 J 1025.50 No data 1.914 0.239

Table C.7. iPSC/1 Implementation #4 Overhead Time (seconds)

Number Time to Comm Time Wait time I Total time
of Load to Send till Nodes I/O & Init

Processors Nodes Init Data Ready Overhead
Sequential N/A N/A N/A 31.44

32 26.68 4.20 22.42 56.92
16 26.68 4.92 23.58 56.68
8 25.88 4.22 24.24 55.80

C-3

Table C.8. iPSC/1 Implementation #5 Results

Number Average Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential

Execution times including initialization
Sequential 2013.25 30.752 1.000

32 799.00 59.068 2.520 0.079
16 1056.25 115.342 1.906 0.119

8 3975.75 2478.692 0.506 0.063
Typical Execution times without initialization

Sequential 1962.48 No data 1.000
32 746.12 No data 2.630 0.082
16 10J7.80 No data 1.891 0.118
8 2379178 No data 0.825 0.103

Table C.9. iPSC/1 Implementation #5 Overhead Time (seconds)

Number Time to Comm Time Wait, time Total time
of Load to Send till Nodes I/O & Init

Processors Nodes Init Data Ready Overhead
Sequential N/A N/A N/A 31.44

32 25.58 6.24 22.46 55.74
16 25.54 4.84 23.66 55.50
8 40.48 4.22 I 24.16 71.20

C-4

Table C.10. iPSC/1 Implementation #6 Results

Number Average Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential _

Execution times including initialization

Sequential 1 2013.25 30.752 1.000

32 587.00 7.280 3.430 0.107
16 645.75 29.482 3.118 0.195

8 1097.50 15.898 1.834 0.229
Typical Execution times without initialization

Sequential 1962.48 No data 1.000

32 529.44 No data 3.707 0.116
16 595.46 No data 3.29b 0.206
8 1104.68 No data 1.777 0.222

Table C.11. iPSC/1 Implementation #6 Overhead Time (seconds)

Number Time to Comm Time Wait time Total time
of Load to Send till Nodes I/O k Init

Processors Nodes Init Data Ready Overhead
Sequential N/A N/A N/A 31.44

32 17.64 11.4 15.34 45.88
16 17.10 7.00 19.68 45.24
8 16.22 4.80 21.88 44.36

C-5

Table C.12. iPSC/1 Implementation #7 Results

Number Average [Speed up
of Execution Standard vs. Efficiency

Processors Time (sec) Deviation Sequential
Execution times including initialization

Sequential 2013.25 30.752 1.000

32 444.50 3.041 4.529 0.142
16 587.25 27.234 3.428 0.214
8 1142.75 31.901 1.762 0.220

Typical Execution times without initialization
Sequential 1962.48 No data 1.000

32 396.55 6.909 4.94 9 0.155
16 587.25 27.231 3.342 0.'2 0! 1
8 1142.75 31.901 1.717 0.215

T'able C.13. iPSC/1 Implementation #7 Overhead Timie (seconds)

Number Time to Comm Time W Wail time T otal time
of Load to Send till Nodes I/O & Init

Processors Nodes lnit Data Ready Overhead
Sequential N/A N/A N/A 31 4.4

32 20.48 11.92 18.10 52.1 G
16 20.32 7.34 21.50 50.62
8 19.80 4.26 24.66 49.72

Table C.14. iPSC/2 Implementation #7 Results

Number Average Speed up
of Execution Standard vs. Efficiency

Pr,-essors Time (sec) Deviation Sequential

Execution times including initialization

Sequential 279.25 0.829 1.000 -

8 144.75 4.815 1.929 0.211
Typical Execution times without initialization unavailable

C-6

Table C.15. iPSC/1 Implementation #8 hesults

Number Average Speed up
of Execution Standard vs. Efliciericv

Processors Time (sec) Deviation Sequential
Execution times including initialization

Sequential 2013.25 30.752 1.000
32 49.5.75 10.353 4.061 0.127
16 658.50 27.262 3.057 0.191
8 1232.50 12.894 1.633 0.20l1

Typical Execution times without initialization
Sequential 1962.48 No data 1.000

32 435.92 No data 4.502 0.1- 1!
16 611.96 No data 3.207 0.200
8 1160.16 No data 1.6 2j0.212

Fable C. 16. iPS('/1 Imiplementat ion #8 Overhead iic Ws

Number Ilime to ('omm Tie \Wailt time lot al 0,'
of Load to Send till Nodes I/0 k Ih1t

Processors Nodes { lnt)at a Ready Overhead

Sequential N/A N/A N/A 31 ..14
32 16.98 S 1f .65 16.74 .52.7H
16 19.36 7.88 22.14 __., _

8 18.26 7.36 T 24.42 2..52

C-7

Table C.17. Encore Parallel BMDSIM Results

Number Average Speed up Speed up
of Execution Standard vs. 1 Proc vs.

Processors Time (sec) Deviation Parallel Sequentiiil
Sequential 253.50 1.118 -- 1.000

1 275.75 0.433 1.000 0. 919
2 175.00 21.90 1.576 1.4149
3 115.50 9.014 2.387 2.195
4 107.25 6.220 2.571 2.361
5 91.50 6.874 3.014 2.770
6 78.75 4.603 3.502 3.219
7 69.25 4.023 3.982 3. (;61
8 77.00 2.315 3.581 3.29)2
9 76.00 2.550 3.628 3.336
10 66.25 2.947 4.162 3.826
11 69.75 5.262 3.953 3.631
12 62.50 2.291 4.412 4.056
13 65.00 2.915 4.242 3.90
14 61.75 8.526 4.466 4. 105
15 63.00 2.739 4.377 4. .021
16 57.25 2.861 4.17 4.h

('-8

Table C.18. Encore Parallel BMDSIM Efficiency

Processors Efficie:,cy Efficicenyl,Cit
1 0.919 0.919
2 0.725 0.797
3 0.732 0.879
4 0.591 0.770
5 0.554 0.778

6 0.537 0.807
7 0.523 0.840
8 0.412 0.702

9 0.371 0.670
10 0.383 0.730
11 0.330 0.664
12 0.338 0.713

13 0.300 0.668
14 0.293 0.683
15 0.268 0.652

16 0.277 0.701

(1-9

Table C.19. Encore Parallel BMDSIM Overhead Times

Number Typical Simulation Total
of Simulation Loop Overhead

Processors Loop Time Speed up Time
Sequential 246 7

1 263 0.935 7
2 143 1.720 4
3 104 2.365 3
4 120 2.050 3
5 106 2.321 2
6 74 3.324 2

7 69 3.565 3
8 77 3.195 3
9 77 3.195 3
10 73 3.370 3
11 63 3.905 4
12 57 4.316 2

13 56 4.393 3
14 50 4.920 4
15 59 .69 3
16 49 5.020 3

C-10

Appendix D. Program Pseudocodc

D.1 iPSC/1 Implementation #1

D.1.1 Host Program

Declare local variables and message types

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (link ordering node - LNKORD)

Load node 2 program (mirror position node - SBMIT and SBMPOS)

Load node 3 program (booster-mirror visibility node - RRBVIS)

Load node 4 program (booster position node - BOSTIT and TRAJ)

Load node 5 program (feasible link node - LNKCAL)

Load node 6 program (laser-mirror visibility node - RRPVIS)

Load node 7 program (mirror-mirror visibility node - MIRVIS)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

Swap byte order if Sun workstation host

Send number of clusters to nodes 0, 3, 4, and 5

Loop over number of clusters

Read cluster information (type, # boosters in cluster, time before launch,

average separation between boosters, launch latitude, launch longitude,

target latitude, target longitude, reentry flight path angle)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

to node 4

Send average separation and number of boosters per cluster to

D-1

nodes 3 and 5

Send time before launch and number of boosters per cluster to node 0

Read mirror information (Orbital distance from Earth's surface,

number of mirrors per orbit, number of mirror orbits,

true anomaly between mirrors in adjacent orbits, inclination

of mirror orbits to equatorial plane, mirror angular slew acceleration,

time to stablize mirrors and track booster)

Swap byte order if Sun workstation host

Send all mirror information to nodes 2, 3, and 5

Send number of orbits and mirrors per orbit to nodes 0, 1, 6, and 7

Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0, 1, 5, 6, and 7

Loop over number of lasers

Read laser latitude and longitude

end loop

Read laser parameters (laser power output, beam quality, laser wavelength,

laser projector aperture, atmospheric divergence factor,

laser jitter, semi-major axis of relay mirror, semi-minor axis of

relay mirror, jitter for relay mirror 1, jitter for relay mirror2,

mean critical fluence required to kill the booster, standard

deviation of critical fluence, number of standard deviations

to be used in determining fluence and dwell time)

Swap byte order if Sun workstation host

Send laser parameters to nodes 5 and 6

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

D-2

Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

Swap byte order if Sun workstation host

Case message type

MIMPACT - then received impact time and launch position

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.1.2 Node 0 - ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster

Receive number of mirrors per orbit, and number of mirror orbits

loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

D-3

loop over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If not END OF TIME INTERVAL then

Receive potential assignment information

Call ASSIGN to determine which of the potential assignments

can be made based on laser and mirror utilization data,

if weapon assignment made then

update laser and mirror utilization arrays ard number of boosters

remaining in cluster

Send assignment to HOST

end if

else

Receive message for end of simulation interval

Send updated utilization information and number of remaining boostcrs

per cluster to nodes 3, 5, 6, 7, and the host

Increment simulation time

end if

END SIMULATION LOOP

D.1.3 Node 1 - LNKORD

Declare local variables and message types

Open communication channels

D-4

Receive number of mirrors per orbit, and number of mirror orbits

Receive number of lasers

Receive simulation time information

START SIMULATION LOOP

If not END OF TIME INTERVAL then

Receive unsorted link information (3 messages)

Call LNKORD to sort links by time to complete engagement

Send "NMLIK" potential assignments to node 0- ASSIG1 N

else

Receive message for end of simulation interval

Increment simulation time

end if

END SIMULATION LOOP

D.I.4 Node 2 - SBMIT and SBMPOS

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

Receive simulation time information

START SIMULATION LOOP

Call SBMPOS to determine mirror positions for time interval

If not first time interval then wait for END OF TIME INTERVAL message

Send mirror positions to nodes 3, 5, 6, 7, and HOST

Increment simulation time

END SIMULATION LOOP

D-5

D.1.5 Node 3 - RRBVIS

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive simulation time information and defenses flag

Receive time of cluster burnout

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster positions for this time interval

If defenses on then

LOOP over booster clusters

if boosters remain in cluster, before burn out, and

above minimum altitude then

Call RRBVIS

Send RRBM, RIANG, and SLANG to nodes 5 and 7

Receive reply from node 7 that ready for next cluster

end loop

end if

Send END OF TIME INTERVAL message to nodes 0, 1, 2, and 4

D-6

Receive updated utilization information anj number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.1.6 Node 4 - BOSTIT and TRAJ

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

initialize booster clusters determining position and

velocity vectors at launch, time of burnout, time

from burnout to impact, and coordinate conversion matrix

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

LOOP over number of clusters

Determine cluster position and velocity vectors for this time interval

end lcUpnot first time interval then wait for END OF TIME INTERVAL message

Send cluster position and velocity vectors to nodes 0, 3, 5, and the host

Increment simulation time

END SIMULATION LOOP

D.1.7 Node 5 - LNKCAL

D-7

Declare local varia-bies fnd nessage types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

mirrors and track booster

Receive number of lasers

Receive laser parameters

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positicns for this time interval

Receive cluster positions for this time interval

Receive laser-mirror angle messages from node 6 (3 messages)

if updated utilization and number of remaining boosters message has

not been received

Receive booster mirror ranges, beam incident angle, and

mirror slew angle from node 3

LOOP while receiving laser-mirror-cluster data for

current cluster from node 7

Receive laser-mirror-cluster data

Call LNKCAL

end loop

if any lasers are available

Send index into cluster data structures, and unsorted

link information to node 1

end if

end if

D-8

Receive updated utiliation information and numbec of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.1.8 Node 6- RRPV'IS

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positions for this time irterval

if defenses are on then

LOOP over number of lasers

Call RRPV!S

end loop

Send laser-mirror ranges to node 7 (3 messages)

D-9

Send laser-mirror angles to node 5 (3 messages)

end if

Receive updated mirror utilization times from node 0

Increment simulation time

END SIMULATION LOOP

D.1.9 Node 7 - MIRVIS

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

Receive number of lasers

LOOP over number of lasers

initialize laser utilization times

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive laser-mirror range messages from node 6 (3 messages)

if END OF TIME INTERVAL message has not been sent

Update laser utilization times if update message received from node 0

Receive booster mirror ranges, beam incident angle, and

mirror slew angle from node 3

LOOP over number of lasers

if laser is available in this time interval

Call MIRVIS

Send laser number and mirror data to node 5

end loop

D-10

Send total number of lasers available to node 5

Send message to node 3 to let it know ready for next cluster

end if

Receive END OF TIME INTERVAL message from node 3

Receive updated laser utilization times from node 0

Increment simulation time

END SIMULATION LOOP

D.2 iPSC/I Implementation #2

D.2. 1 Host Program

Declare local variables and message types

Load node 0 program (assignment node - LNKORD and ASSIGN)

Load node I Program (link calculation node - RRBVIS, RRP\rIS

MIRVIS, and LNKCAL)

Load node 2 program (booster position node - BOSTIT and TRAJ)

Load node 3 program (mirror position node - SBMIT and SBMPOS)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

Swap byte order if Sun workstation host

Send number of clusters to nodes 0, 1, and 2

Loop over number of clusters

Read cluster information (see implementation #1)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

to node 2

D-11

Send average separation and number of boosters per cluster to

node 1

Send time before launch and number of boosters per cluster to nd(e,((

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 1 and 3

Send number of orbits and mirrors per orbit to node 0

Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0 and 3

Loop over number of lasers

Read laser latitude and longitude

end loop

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to node 1

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

Swap byte order if Sun workstation host

Case message type

M!MPIACT - then received impact time and launch position

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

D-12

MSGZAP - received weapon assignment, plot if on Sun

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation :ncrement, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.2.2 Node 0 - LNKORD and ASSIGN

D-clare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and time before launch

Receive number of mirrors per orbit, and number of mirror orbits

loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

loop over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If not END OF TIME INTERVAL then

Receive unsorted link calculations from node 1 (3 messages)

D-13

Call LNKORD

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

else

Receive message for end of simulation interval

Send updated utilization information and number of remaining boosters

per cluster to node 1 and the host (2 messages each)

Increment simulation time

end if

END SIMULATION LOOP

D.2.3 Node I - RRBVIS, RRPVIS, MIRVIS, & LNKCAL

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors ner orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

D-14

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

Receive time of burnout from node 2

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster position vector for this time interval

Receive cluster velocity vector for this time interval

If defenses on then

LOOP over number of lasers

Call RRPVIS

end loop

LOOP over booster clusters

if boosters remain in cluster, before burn out, and

above minimum altitude then

Call RRBVIS

LOOP over number of lasers

if laser is available in this time interval

Call MIRVIS

Call LNKCAL

end loop

Send unsorted link data to node 0 (3 messages)

end loop

end if

Send END OF TIME INTERVAL message to nodes 0, 2, and 3

D-15

Receive updated utilization information and number of remaining boosters

per cluster from node 0 (2 messages)

Increment simulation time

END SIMULATION LOOP

D.2.4 Node 2 - BOSTIT and TRAJ

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

LOOP over number of clusters

Determine cluster position and velocity vectors for this time interval

end pld iot first time interval then wait for END OF TIME INTERVAL message

Send cluster position and velocity vectors to nodes 0, 1, and the host

Increment simulation time

END SIMULATION LOOP

D.2.5 Node 3 - SBMIT and SBMPOS

Declare local variables and message types

Open communication channels

D-16

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

Receive simulation time information

START SIMULATION LOOP

Call SBMPOS

If not first time interval then wait for END OF TIME INTERVAL message

Send mirror positions to node 1 and HOST

Increment simulation time

END SIMULATION LOOP

D.3 iPSC/1 Implementation #3

D.3.1 Host Program

Declare local variables and message types

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)

Kill processes in nodes 0, 1, 2, 3, and 4

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (mirror position node - SBMIT and SBMPOS)

Load node 2 program (laser-mirror node - RRPVIS)

Load node 3 program (cluster position node - BOSTIT and TRAJ)

Load node 4 program (cluster-mirror node - RRBVIS)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

Swap byte order if Sun workstation host

Send number of clusters to nodes 0, 3, 4, and

5 through last node in current cube

D-17

Loop over number of clusters

Read cluster information (see implementation #1)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

to node 3

Send average separation and number of boosters per cluster to

node 4 and nodes 5 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 1 and 5 through last node in current cube

Send number of orbits and mirrors per orbit to node 0, 2, and 4

Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0, 2, and 5 through last node in current cube

Loop over number of lasers

Read laser latitude and longitude

end loop

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to nodes 2 and 5 through last node in current cube

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

D-18

Swap byte order if Sun workstation host

Case message type

MIMPACT - then received impact time and launch position

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.3.2 Node 0 - ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster

Receive number of mirrors per orbit, and number of mirror orbits

loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

loop over number of lasers

initial laser utilization array

end loop

D-19

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If END OF TIME INTERVAL message not received then

Receive potential assignment information array

from nodes 5 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

end loop

else

Receive message for end of simulation interval

Send updated utilization information and number of remaining boosters

per cluster to nodes 2, 4, and 5 through last node in current cube

Send END OF TIME INTERVAL message to nodes 1 and 3

Send updated utilization information and number of remaining boosters

per cluster to the host

Increment simulation time

end if

END SIMULATION LOOP

D.3.3 Node I - SBMIT and SBMPOS

D-20

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

Receive simulation time information

START SIMULATION LOOP

Call SBMPOS

If not first time interval then wait for END OF TIME INTERVAL message

Send mirror positions to nodes 2, 4, nodes 5 through the last node

in the current cube, and the HOST

Increment simulation time

END SIMULATION LOOP

D.3.4 Node 2 - RRPVIS

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

D-21

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positions for this time interval

if defenses are on then

LOOP over number of lasers

Call RRPVIS

end loop

Send laser-mirror ranges and angles to nc'1 ps 5 thrrlgo

the maximum node id (6 messages)

end if

R ,ceive updated mirror utilization times from node 0

Increment simulation time

END SIMULATION LOOP

D.3.5 Node 3 - BOSTIT and TRAJ

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

LOOP over number of clusters

D-22

Determine cluster position and velocity vectors for this time interval

end ldcpiot first time interval then wait for END OF TIME INTERVAL message

Send cluster position and velocity vectors to nodes 0, 4, nodes 5 through

the last node in the current cube, and the host

Increment simulation time

END SIMULATION LOOP

D.3.6 Node 4 - RRBVJS

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of m.irors per 3Trit, and number of mirror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive simulation time information and defenses flag

Receive time of cluster burnout from node 3

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster positions for this time interval

If defenses on then

LOOP over booster clusters

if boosters remain in cluster, before burn out, and

above minimum altitude then

D-23

Call RRBVIS

Save RRBM, RIANG, and SLANG in vector for next node in loop from

node 5 to last node in current cube

if information for 4 clusters has been saved in thc vector

Send RRBM, RIANG, and SLANG to that node

if next node is node 5 wait to receive message that

node 5 is ready for next cluster

end if

end loop

end if

Send any saved but not sent cluster vectors to the appropriate nodes

Send END OF TIME INTERVAL message to node 5

Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.3.7 Node 5+ - MIRVIS, LNKCAL, & LNKOftD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

D-24

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster position and velocity vectors for this time interval

Receive laser-mirror ranges and angles from node 2 (6 messages)

If END OF TIME INTERVAL message not yet received then

Receive cluster vector from node 4

LOOP over number of clusters in received vector

LOOP over number of lasers

if laser iz available in this time interval

Call MIRVIS

Call LNKCAL

end loop

Call LNKORD

Save "NMLIK" potential assignments in array for node 0

if array for node 0 is full then

Send array of potential assignments to node 0

end if

end loop

end if

Send any non-empty arrays of potential assignments to node 0

Receive END OF TIME INTERVAL message

if not last node in current cube then

Send END OF TIME INTERVAL message to next node in

range 5 to last node

else

D-25

Send END OF TIME INTERVAL message to node 0

end if

Receive updatcd utilization information -..a numoer of remaining boosters

per cluster from node 0 (2 messages)

Increment simulation time

END SIMULATION LOOP

D.4 iPSC/I Implementation 114

D.4.I Hoar TYUTgra1

Declare local variables and message types

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)

Kill processes in nodes 0, 1, 2, and 3

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (mirror position node - SBMIT and SBMPOS)

Load node 2 program (cluster position node - BOSTIT and TRAJ)

Load node 3 program (cluster-mirror node - RRBVIS)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

Swap byte order if Sun workstation host

Send number of clusters to nodes 0, 2, 3, and

4 through last node in current cube

Loop over number of clusters

Read cluster information (see implementation #1)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

D-26

to node 2

Send average separation and number of boosters per cluster to

node 3 and nodes 4 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 1 and 4 through last node in current cube

Send number of orbits and mirrors per orbit to node 0 and 3

Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0 and 4 through last node in current cube

Loop over number of lasers

Read laser latitude and longitude

end Icop

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to nodes 4 through last node in cube

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

Send increment, max time and flag tt, all nodes

START SIMULATION TIME LOOP

Receive pending message

Swap byte order if Sun workstation host

Case message type

MIMPACT - then received impact time and launch position

vector for clusters, ased in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

D-27

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSGI - received number of boosters remaining in each

cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.4.2 Node 0 - ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster

Receive number of mirrors per orbit, and number of mirror orbits

loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

loop over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If END OF TIME INTERVAL message not received then

D-28

Receive potential assignment information array

from nodes 5 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

end loop

else

Receive END OF TIME INTERVAL message

Send updated utilization information and number of remaining boosters

per cluster to nodes 2, 4, and 5 through last node in current cube

Send END OF TIME INTERVAL message to nodes 1 and 2

Send updated utilization information and number of remaining boosters

per cluster to the host

Increment simulation time

end if

END SIMULATION LOOP

D.4.3 Node 1 - SBMIT and SBAIPOS

Declare local variables and message types

Open communication charniels

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

D-29

Receive simulation tirie information

START SIMULATION LOOP

Call SBMPOS

If not first time interval then wait for END OF TIME INTERVAL message

Send mirror positions to nodes 3 through the last node in the

current cube, and the HOST

Increment simulation time

END SIMULATION LOOP

D.4.4 Node 2 - BOSTIT and TRAJ

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

LOOP over number of clusters

Determine cluster position and velocity vectors for this time interval

end lddpiot first time interval then wait for END OF TIME INTERVAL message

Send cluster position and velocity vectors to nodes 0, 3, nodes 4 through

the last node in the current cube, and the host

Increment simulation time

END SIMULATION LOOP

D-30

D.4.5 Node 3 - RRBVIS

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive simulation time information and defenses flag

Receive time of cluster burnout from node 2

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster positions for this time interval

If defenses on then

LOOP over booster clusters

f boosters remain in cluster, before burn out, and

above minimum altitude then

Call RRBVIS

Save RRBM, RIANG, and SLANG in vector for next node in loop from

node 4 to last node in current cube

if information for 4 clusters has been saved in the vector

Send RRBM, RIANG, and SLANG to that node

if next node is node 4 wait to receive message that

D-31

node 4 is ready for next cluster

end if

end loop

end if

Send any saved but not sent cluster vectors to the appropriate nodes

Send END OF TIME INTERVAL message to node 4

Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.4.6 Node 4+ - RRPVIS, MIRVIS, LNKCAL, g LNKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster position and velocity vectors for this time interval

D-32

LOOP over number of lasers

if laser is available this time interval Call RRPVIS

end loop

If END OF TIME INTERVAL message not yet received then

Receive cluster vector from node 4

LOOP over number of clusters in received vector

LOOP over number of lasers

if laser is available in this time interval

Call MIRVIS

Call LNKCAL

end loop

Call LNKORD

Save "NMLIK" potential assignments in array for node 0

if array for Pod-, 0 is full then

Send array of potential assignments to node 0

end if

end loop

end if

Send any non-empty arrays of potential assignments to node 0

Receive END OF TIME INTERVAL message

if not last node in current cube then

Send END OF TIME INTERVAL message to next node in

range 4 to last node

else

Send END OF TIME INTERVAL message to node 0

end if

Receive updated utilization information and number of remaining boosters

per cluster from node 0 (2 messages)

D-33

Increment simulation time

END SIMULATION LOOP

D.5 iPSC/1 Implementation #5

D.5.1 Host Program

Declare local variables and message types

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)

Kill processes in nodes 0, 1, 2, and 3

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (mirror position node - SBMIT and SBMPOS)

Load node 2 program (cluster position node - BOSTIT and TRAJ)

Load node 3 promram (Supervisor node)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

Swap byte order if Sun workstation host

Send number of clusters to nodes 0, 2, 3, and

4 through last node in current cube

Loop over number of clusters

Read cluster information (see implementation #1)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

to node 2

Send average separation and number of boosters per cluster to

node 3 and nodes 4 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

D-34

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 1 and 4 through last node in current cube

Send number of orbits and mirrors per orbit to node 0 and 3

Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0 and 4 through last node in current cube

Loop over number of lasers

Read laser latitude and longitude

end loop

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to nodes 4 through last node in cube

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

Swap byte order if Sun workstation host

Case message type

MIMPACT - then received impact time and launch position

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation increment, increment time

D-35

END SIMULATION TIME LOOP

Output end of simulation information

D.5.2 Node 0 - ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Rcccivc numbcr of bosters pcr clustcr

Receive number of mirrors per orbit, and number of mirror orbits

loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

loop over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If END OF TIME INTERVAL message not received then

Receive potential assignment information array

from nodes 5 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

D-36

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

end loop

else

Receive END OF TIME INTERVAL message

Send updated utilization information and number of remaining boosters

per cluster to nodes 2, 4, and 5 through last node in current cube

Send END OF TIME INTERVAL message to nodes 1 and 2

Send updated utilization information and number of remaining boosters

per cluster to the host

Increment simulation time

end if

END SIMULATION LOOP

D.5.3 Node 1 - SBMIT and SBMPOS

Declare local variables and message types

Open communication channels

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror altitude, true anomaly, and orbit inclination

Call SBMIT to initialize mirror orbits

Receive simulation time information

START SIMULATION LOOP

Call SBMPOS

If not first time interval then wait for END OF TIME INTERVAL mes,,age

D-37

Send mirror positions to nodes 4 through the last node in the

current cube, and the HOST

Increment simulation time

END SIMULATION LOOP

D.5.4 Node 2 - BOSTIT and TRAJ

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Cail BOSTIT

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

LOOP over number of clusters

Determine cluster position and velocity vectors for this time interval

end lcdGpiot first time interval then wait for END OF TIME INTERVAL message

Send cluster position and velocity vectors to nodes 0, 3, nodes 4 through

the last node in the current cube, and the host

Increment simulation time

END SIMULATION LOOP

D.5.5 Node 3 - Supervisor node

Declare local variables and message types

D-38

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive simulation time information and defenses flag

Receive time of cluster burnout from node 2

START SIMULATION LOOP

Receive cluster positions for this time interval

If defenses on then

LOOP over booster clusters

if boosters remain in cluster, before burn out, and

above minimum altitude then

Save cluster index in vector for next node in the range

node 4 to last node in current cube

if information for 4 clusters has been saved in the vector

Send the vector to that node

end if

end loop

end if

Send any saved but not sent cluster vectors to the appropriate nodes

Send END OF TIME INTERVAL message to node 4

Receive updated utilization information and number of remaining boosters

per cluster from node 0

D-39

Increment simulation time

END SIMULATION LOOP

D 5.6 Node 4+ - RRPVIS, RRBVIS, MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

START SIMULATION LOOP

Receive mirror positions for this time interval

Receive cluster position and velocity vectors for this time interval

LOOP over number of lasers

if laser is available this time interval Call RRPVIS

end loop

If END OF TIME INTERVAL message not yet received then

Receive cluster vector from node 4

LOOP over number of clusters in received vector

Call RRBVIS

LOOP over number of lasers

D-40

if laser is available in this time interal

Call MIRVIS

Call LNKCAL

end loop

Call LNKORD

Save "NMLIK" potential assignments in array for node 0

if array for node 0 is full then

Send array of potential assignments to node 0

end if

end loop

end if

Send any non-empty arrays of potential assignments to node 0

Receive END OF TIME INTERVAL message

if not last node in current cube then

Send END OF TIME INTERVAL message to next node in

range 4 to last node

else

Send END OF TIME INTERVAL message to node 0

end if

Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.6 iPSO/I Implemcntation #6

D.6. 1 Host Program

Declare local variables and message types

I)-41

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, and LNKORD)

Kill processes in nodes 0 and 1

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (Supervisor node)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

Swap byte order if Sun workstation host

Send number of clusters to all nodes

Loop over number of clusters

Read cluster information (see implementation #1)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

to nodes 2 through the last node in the current cube

Send average separation and number of boosters per cluster to

nodes 2 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 2 through last node in current cube

Send number of orbits and mirrors per orbit to node 0

Rea number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0 and 2 through last node in current cube

Loop cver number of lasers

Read laser latitude and longitude

end loop

D-42

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to nodes 2 through last node in cube

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

Swap byte order if Sun workstation host

Case message type

MIMPACT - then received impact time and launch position

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.6.2 Node 0 - ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster

Receive number of mirrors per orbit, and number of mirror orbits

D-43

loop over number of mirror orbits

loop over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

loop over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Receive time of cluster burnout

START SIMULATION LOOP

Receive booster position for this time interval

If END OF TIME INTERVAL message not received then

Receive potential assignment information array

from nodes 2 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

end loop

else

Receive END OF TIME INTERVAL message

Send updated utilization information and number of remaining boosters

per cluster to nodes 1 through last node in current cube and the host

D-44

Increment simulation time

end if

END SIMULATION LOOP

D.6.3 Node 1 - Supervisor node

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of miiror orbits

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Receive simulation time information and defenses flag

Receive time of cluster burnout from node 2

START SIMULATION LOOP

Receive cluster positions for this time interval

If defenses on then

LOOP over booster clusters

if boosters remain in cluster, before burn out, and

above minimum altitude then

Save cluster index in vector for next node in the range

node 2 to last node in current cube

if information for 4 clusters has been saved in the vector

Send the vector to that node

D-45

end if

end loop

end if

Send any saved but not sent cluster vectors to the appropriate nodes

Send END OF TIME INTERVAL message to node 2

Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

i.6.4 Node 2+ - SBMIT, SBMPOS, BOSTIT, TRAJ, RRPVIS, RRBVIS,

MIRVIS, LNKCAL, & LNAKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

Receive initialization data

Call SBMIT

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

D-46

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

Send cluster impact times to host

Send time to cluster burnout to nodes 0 and 1

START SIMULATION LOOP

Call SBMPOS

if I am node 2 Send mirror positions to the host

LOOP over number of clusters

Call TRAJ

end l660I am node 2 Send booster position and velocity vectors

to nodes 0 and 1, and the host

LOOP over number of lasers

if laser is available this time interval Call RRPVIS

end loop

If END OF TIME INTERVAL message not yet received then

Receive cluster vector from node 1

LOOP over number of clusters in received vector

Call RRBVIS

LOOP over number of lasers

if laser is available in this time interval

Call MIRVIS

Call LNKCAL

end loop

Call I NKORD

Save "NMLIK" potential assignments in array for node 0

if array for node 0 is full then

Send array of potential assignments to node 0

D-47

end if

end loop

end if

Send any non-empty arrays of potential assignments to node 0

Receive END OF TIME INTERVAL message

if not last node in current cube then

Send END OF TIME INTERVAL message to next node in

range 9 to last node

else

Send END OF TIME INTERVAL message to node 0

end if

Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D.7 iPSC/1 Implementation #7

D.7.1 Host Program

Declare local variables and message types

Load ALL nodes with link calculation node (MIRVIS, LNKCAL, & LNKORD)

Kill processes in nodes 0 and 1

Load node 0 program (assignment node - ASSIGN)

Load node 1 program (Supervisor node)

Open communication channel to nodes

Initialize graphics if Sun workstation host

Read number of clusters

g..az .t;te order if Sun workstation host

D-48

Send number of clusters to all nodes

Loop over number of clusters

Read cluster information (see implementation #1)

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and target positions, and reentry angle

to all nodes

Send average separation and number of boosters per cluster to

nodes 2 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to nodes 0 and 2 through last node in current cube

Read number of lasers

Swap byte order if Sun workstation host

Send number of lasers to nodes 0 and 2 through last node in current cube

Loop over number of lasers

Read laser latitude and longitude

end loop

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to nodes 2 through last node in cube

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation host

Send increment, max time and flag to all nodes

START SIMULATION TIME LOOP

Receive pending message

D-49

Swap byte order if Sun workstation host

Case message type

MIMPACT - then received impact time and launch position

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plot if on Sun

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation increment, increment time

END SIMULATION TIME LOOP

Output end of simulation information

D.7.2 Node 0 - SBM!T, SBMPOS, BOSTIT, TRAJ, & ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror initialization data

Call SBMIT

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

D-50

initialize mirror utilization arrays

end loop

end loop

Receive number of lasers

LOOP over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Send impact times to host

START SIMULATION LOOP

Call SBMPOS

Send mirror positions to host

LOOP over number of clusters

Call Rd lbop

Send cluster positions to host

If END OF TIME INTERVAL message not received then

Receive potential assignment information array

from nodes 2 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

end loop

else

Receive END OF TIME INTERVAL message

D-51

Send updated utilization information and number of remaining boosters

per cluster to all nodes and the host

Increment simulation time

end if

END SIMULATION LOOP

D.7.3 Node 1 - BOSTIT, TRAJ, Supervisor node

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive number of boosters per cluster and average separation

Receive simulation time information and defenses flag

START SIMULATION LOOP

if first time through simulation loop then

LOOP over number of clusters

Call TRAJ

end loop

end if

If defenses on then

LOOP over booster clusters

if boosters remain in cluster, before burn out, and

above minimum altitude then

D-52

Save cluster index in vector for next node in the range

node 2 to last node in current cube

end if

end loop

end if

LOOP over range 2 to last node in current cube

Send cluster vector to the appropriate node

end loop

Send END OF TIME INTERVAL message to node 2

Increment simulation time

if not last time through loop then

LOOP over number of clusters

Caii TRAJ with new time

end loop

end if

Receive updated utilization information and number of remaining boosters

per cluster from node 0

END SIMULATION LOOP

D.7.4 Node 2+ - SBMIT, SBMPOS, BOSTIT, TRAJ, RRPIS, [BVIS,

MIRVIS, LNKCAL, & LNKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average separation

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

D-5?

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

Call SBMPOS

START SIMULATION LOOP

LOOP over number of lasers

if laser is available this time interval Call RRPVIS

end loop

If END OF TIME INTERVAL message not yet received then

Receive cluster vector from node 1

LOOP over number of clusters in received vector

Call TRAJ

Call RRBVIS

LOOP over number of lasers

if laser is available in this time interval

Call MIRVIS

Call LNKCAL

end loop

Call LNKORD

Save "NMLIK" potential assignments in array for node 0

if array for node 0 is full then

Serd array of potential assignments to node 0

end if

end loop

end if

D-54

Send any non-empty arrays of potential assignments to node 0

Receive END OF TIME INTERVAL message

if not last node in current cube then

Send END OF TIME INTERV~AL message to next node ill

range 4 to last node

else

Send END OF TIME INTERVAL message to node 0

end if

Call SBMPOS for next time

Receive updated utilization informnation and number of remaining boosters

per cluster from node 0

Increment simulation timle

ENI) SUIMULATION LOOP

I).8 iPSC/1 Imphrn(intation #7

D) 8. 1 Host Programn

Declare local variables and message types

Load ALL niodes with link calculatiot. n(e (MIRVIS, L.NIKCA L. an(l LNE0OR)

1Kill pi-ocesses in node 0J

Load rio(e 0 program (assigriment node - ASSIGN)

Open commu n icat ionl chan el to nudes

Inriit ial ize graphics if Suin workstation host

Px ad nunmb~er of (ilw t r5,

Swap byte ordler if Sni workst at jon host

Send numnbler of ci st ers tou all n ode s

Loop over wivinhcr of clus ters

Iea d (lus ,ter Ii f ti T iIon i Iii inul i ei t at Ii #1

end loop

Swap byte order if Sun workstation host

Send cluster type, launch and targ(- positions, and reentry angle

to all nodes

Send average separation and nimber of boosters per cluster to

nodes 1 through last node in current cube

Send time before launch and number of boosters per cluster to node 0

Read mirror information (see implementation #1)

Swap byte order if Sun workstation host

Send all mirror information to all nodes

Read number of lasers

Swap byte order if SuA workstation host

Send number of lasers to all nodes

Loop over number of lasers

Read laser latitude and longitude

end loop

Read laser parameters (see implementation #1)

Swap byte order if Sun workstation host

Send laser parameters to nodes 1 through lhst ,eo in cube

Read Simulation increment, maximum simulation time, and flag

to turn on defenses

Swap byte order if Sun workstation hoz:t

Send increment, max time and flag to all nodes

STAR'i' SIMULA'KION TIMt:E LOOP

Receive pending message

Swap byte order if Sun workstation host

Case message type

MINIPACT - then received impact time and launch positiol

I)-56

vector for clusters, used in graphics routines.

MRPOSMSG - received mirror positions, plot if on Sun

MBUFMSG - received cluster positions, plot if on Sun

MSGZAP - received weapon assignment, plet if -- 0in

LENGMSG1 - received number of boosters remaining in each

cluster at end of simulation inciemenui, increment tjira(e

END SIMULATION TIME LOOP

Output end of simulation information

D.8.2 Node 0 - ASSIGN

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boost -rs per cluster

Receive cluster types

Receive cluster launch and target positions, re-entry angle, and launch time

LOOP over number of clusters

Call BOSTIT

end loop

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror initialization data

(dil SBMIT

LOOP over number of mirror orbits

LOOP over nunmber of mirrors per orbit

initialize mirror utilization arrays

end loop

end 1001)

)-57

Receive number of lasers

LOOP over number of lasers

initial laser utilization array

end loop

Receive simulation time information

Send impact times to host

START SIMULATION LOOP

Call SBMPOS

Send mirror positions to host

LOOP over number of clusters

Call TePxAIbop

Send cluster positions to host

If END OF TIME INTERVAL message not received then

Receive potential assignment information array

from nodes 2 through last node in current cube

LOOP over number of assignments in received array

Call ASSIGN

if weapon assignment made then

update laser and mirror utilization arrays and number of boosters

remaining in cluster

Send assignment to HOST

end if

end loop

else

Receive END OF TIME IN' LI vAL, message

Send updated utilization information and number of remaining boosters

per cluster to all nodes and the host

Increment simulation time

D-58

end if

END SIMULATION LOOP

D.8.3 Node 1+ - RRPVIS, RRBVIS, MIRVIS, LNKCAL, & LNAKORD

Declare local variables and message types

Open communication channels

Receive number of clusters

Receive number of boosters per cluster and average beparation

Receive number of mirrors per orbit, and number of mirror orbits

Receive mirror angular slew acceleration and time to stablize

Receive number of lasers

Receive laser parameters

LOOP over number of lasers

initialize laser utilization arrays and laser position vectors

end loop

Receive simulation time information and defenses flag

Call SBMPOS

START SIMULATION LOOP

LOOP over number of lasers

if laser is available this time interval Call RRPVIS

end loop

If END OF TIME INTERVAL message not yet received then

LOOP over number of clusters modulo my node number

Call TRAJ

Call RRBVIS

LOOP over number of las-.,

if laser is available in this time interval

I)-59

Call MIRVIS

Call LNKCAL

end loop

Call LNKORD

Save "NMLIK" potential assignments in array for ,node 0

if array for node 0 is full then

Send array of potential assignments to node 0

end if

end loop

end if

Send any non-empty arrays of potential assignments to node 0

if node 1 then

Send END OF TIME INTERVAL message to node 2

else

Receive END OF TIME INTERVAL message

if not last node in current cube then

Send END OF TIME INTERVAL message to next node in

range 3 to last node

else

Send END OF TIME INTERVAL message to node 0

end 1;

end if

Call SBMPOS to determine mirror positions for next time interval

Receive updated utilization information and number of remaining boosters

per cluster from node 0

Increment simulation time

END SIMULATION LOOP

D-60

D.9 Encore Implementation

Declare all global data structures

Read in booster initialization information

BEGIN PARALLEL

LOOP over number of clusters

Call BOSTIT

end loop

END PARALLEL

Read in mirror initialization information

Call SBMIT

LOOP over number of mirror orbits

LOOP over number of mirrors per orbit

initialize mirror utilization arrays

end loop

end loop

Read in laser initialization information

LOOP over number of lasers

Determine laser position and initialize utilization times

end loop

Read in simulation times and defense flag

BEGIN SIMULATION LOOP

Call SBMPOS

BEGIN PARALLEL

LOOP over number of clusters

Call TRAJ

end loop

END PARALLEL

if defenses are on then

D-61

BEGIN PARALLEL

LOOP over the number of lasers

Call RRPVIS if laser is available in this time interval

end loop

END PARALLEL

BEGIN PARALLEL

Declare local data structures required

LOOP over booster clusters

if cluster is above minimum altitude and before burnout then

LOOP over available lasers

Call MIRVIS

Call LNKCAL

end loop

Call LNKORD

BEGIN CRITICAL SECTION

Call ASSIGN

Display assignment

END CRITICAL SECTION

end if

end loop

END PARALLEL

end if

Inciement Simulation time

END SIMULATION LOOP

Display simulation results

D-62

Bibliography

1. Banks, Jerry and John S. Carson. Discrete Event Simulation. Englewood Cliffs,
NJ: Prentice-Hall, 1984.

2. Baum, Alan M. and Donald J. McMillan. "Automated Parallelization of Serial
Simulations for Hypercube Parallel Processors." In Distributed Simulation 1989,
La Jolla CA: SCS, 1989.

3. Beckman, Brian, et al. "Instantaneous Speedup." To be published in summmer
simulation conference 1989, April 1989.

4. Beckman, Brian and P. Hontalas and J. Ruffles and F. Wieland and D. Jefferson.
"Distributed Simulation and Time Warp, Partl: Desir of Colliding Pucks." In
Unger, B. and D. Jefferson, editors, Distributed Simulation 1988, Volume 19,
pages 56-60, La Jolla CA: SCS, February 1988.

5. Biles, William E. "Introduction to Simulation." In Proceedings of the 1987
Winter Simulation Conference, pages 7-15, December 1987.

6. Bryant, Randal E. "Simulation on a Distributed System." In Proceedings of the
1st lnt 'I Conference on Distributed Computing Systems, pages 544-552, October
1979.

7. Chandy, K. Mani and Jayadev Misra. "Distributed Simulation: A Case Study
in Design and Verification of Distributed Programs," IEEE Transactions on
Software Engineering, 5(5):440-452 (September 1979).

8. Chandy, K. Mani and Rivi Sherman. "The Conditional Event Approach to
Distributed Simulation." In Distributed Simulation 1989, La Jolla CA: SCS,
1989.

9. Chandy, K.M. and J. Misra. "Asynchronous Distributed Simulation via a Se-
quence of Parallel Computations," Communications of the A CM, 24 (1):19'-
206 (April 1981).

10. Cho, C. K., E. K. Lin and C. L. Jen. "On Performance Evaluations of Multi-
processor Systems for Real-time Simulation." In Proceedings of the 17th Annual
Simulation Symposium, pages 209-225, March 1984.

11. Comfort, John Craig. "The Design of a Multiprocessor Based Simulation Com-
puter - II." In Proceedings of the Sixteenth Annual Simulation Symposium, pages
197-209, 1983.

12. DESE Research and Development, Inc., Huntsville, Alabama. A Method for Im-
proving Technology Research and Development Decisions Regarding BMD and
ASAT, 1985. Volume II - Simulation System Design Guide.

BIB-1

13. Encore. Multimax Technical Summary. Encore Computer Corporation, Marl-
boro, MA, March 1987.

14. Fujimoto, Richard M. "Performance Measurements of Distributed Simulation

Strategies." In Distributed Simulation 1988, La Jolla CA: SCS, 1988.

15. Gilmer Jr., John B. and Jung Pyo Hong. "Replicated State Space Approach
for Parallel Simulation." In Wilson, J., et al., editors, Proceedings of the 1986
Winter Simulation Conference, pages 430-434, IEEE, December 1986.

16. Glover, Charles. "Techniques for Converting Sequential Programs Into Concur-
rent Programs for a Hypercube Computer." draft copy, 1988.

17. Hartrum, Thomas C. and Brian J. Donlan. "Distributed battle-management
simulation on a Hypercube." In Unger, B. and D. Jefferson, editors, Distributed
Simulation 1988, pages 3-7, La Jolla CA: SCS, February 1988.

18. Heidelberger, Philip. "Statistical Analysis of Parallel Simulation." In Proccrd-
ings of the 1986 Winter Simulation Conference, pages 290-295, 1986.

19. Hoare, C.A.R. "Communicating Sequential Processes," Communications of the
A CM, 21(8):666-677 (August 1978).

20. Hwang, Kai and Faye A. Briggs. Computer Architecture and Parallcl Processing.
New York NY: McGraw-Hill, 1984.

21. Intel. iPSC System Overview Manual. Intel Scientific Computers, Beaverton,
Oregon, November 1986. Order Number 310610-001.

22. Intel. iPSC/2 User's Guide (Preliminary). Intel Scientific Computers, Beaver-
ton, Oregon, March 1988. Order Number 311532-002.

23. Jefferson, David. "Virtual Time," A CM Transactions on Progranming Lan-

guagqcs and Systems, 7(3):404-425 (July 1985).

24. Jefferson, David and Henry Sowizral. "Fast Concurrent Simulation using the
Time Warp Mechanism." In Distributed Simulation 198.5, La Jolla CA: SCS,
1985.

25. Jefferson, David, et al. ""The Status of the Time Warp Operating System"."

In Symposium on Operating Systems Principles, pages 738-744, ACM, 1988.

26. Jones, Douglas W. "Concurrent Simulation: An Alternative to Distributed
Simulation." In Proceedings of the 1986 Winter Simulation Confcrencf, pages
417-423, 1986.

27. Kaudel, Fred J. "A Literature Survey on Distributed Discrete Event Simula-
tion," Simuletter, 18(2):11-21 (June 1987).

28. Lin, Eric K. and Chian-Li Jen. "Contention Problem of a Multiprocessor Simu-
lator." In Proceedings of the 16th 4nnual Simulation Symposium, pages 229-238,
March 1983.

BIB-2

29 Misra, Jayadev. "Distributed Discrete-Event Simulation," ACM Computing
Surveys, 18(1):39-65 (March 1986).

30. Nicol, David M. "Mapping a battlefield simulation onto message-passing paral-
lel architectures." In Distributed Simulation 1988, La Jolla CA: SCS, 1988.

31. Nicol, David M. "Dynamic Remapping of Parallel Time-stepped Simulations."

In Distributed Simulation 1989, La Jolla CA: SCS, 1989.

32. Nicol, David M. and Paul F. Reynolds, Jr. "Problem Oriented Protocol)e-
sign." In Proceedings of the 1984 Winter Simulation Conferencc, pages 471-474,
November 1984.

33. Peterson, James L. and Abraham Silberschatz. Operating Sy.tcin C'oncfpts
(Second Edition). Reading, MA: Addison-Wesley, 1985.

34. Pritsker, A. Alan B. Introduction to Simulation and SLAM II. West Lafayette
IN: Systems Publishing Corp., 1986.

35. Quinn, Michael J. Designing Efficient Algorithms for Paralll C'omput~rs. New

York NY: McGraw-Hill, 19S7.

36. Reed, Daniel A. "Parallel Discrete Event Simulation: A Case Studv." In Pro-

ceedings of the Eighlenth Annual Simulation Symposium, pages 95 107, 1985.

37. Reed, Daniel A. and Allen D. Malonv. "Parallel Discrete Event Sinulation: The
Chandy-Misra Approach." In Distributed Simulation 1988. La Jolla (A: SCS,
1988.

38. Reynolds, Paul F., Jr. "A Shared Resource Algorithm for Distril- 'ted Simtula-

tion." In Proceedings of the Ninth Annual Intl' Computer Archit urc Conftr-
ence, pages 259-266, April 1982.

39. Reynolds, Paut F., Jr. "A spectrum of options for parallel simulation." In Pro-

ceedings of the 1988 Winter Simulation Conference, pages 325-332, December
1988.

40. Shannon, Robert E. Systems Simulation: The Art and Science. Englewood
Cliffs NJ: Prentice-Hall, 1975.

41. Wieland, Fredrick and others. "Distributed combat simulation and time warp:

The model and ;ts performance." In Distributed Simulation 1989, La Jolla CA:
SCS, 1989.

42. Zhang, Guoqing and Bernard P. Zeigler. "DEVS-Scheme Supported Mapping
of Herarchical Models onto Multiple Processor Systems." In Distributed Simu-
lation 1989, La Jolla CA: SCS, 1989.

BIB-3

Vita

Mark Leslie Huson After grad-

uating from Springfield High School in 1977, he attended the University of Tulsa (no

degree), before enlisting in the Air Force in 1982. He served as an Electronic War-

fare Technician at Eglin AFB, Florida, prior to completing his B.S. in Computer

Science from the University of Tulsa in 1985 via the Air Force's Bootstrap program.

After receiving his commission through OTS in September, 1985, he was stationed

at Peterson AFB, Colorado, as a Missile Warning/Space Defense Communications

Analyst for HQ AFSPACECOM. In December 1986 he became a Command, Con-

trol, Communications Prograimmer for the Mobile Command and Control System

(MCCS), an Ada development project for US Space Command. He completed an

.M.S. in Systems Management from the University of Southern California in April of

1988, prior to reporting to the Air Force Institute of Technology.

VITA.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OM No. 70ro 18e

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE dis tribution uni imi ted.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/PNG/89D-l0
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

School of Engineering AFIT/ENG

6 . ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Sa. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION S I O (If applicable)

Phase I Program Office SDIO/S/rI
8c. ADDI L_-:S (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Room 1149, The Pentagon PROGRAM PROJECT TASK WORK UNIT
Washington, D.C. 20301-7100 ELEMENT NO. NO. NO ACCESSION NO

11. TITLE ''Include Security Classification)
AN EMPIPICAL DEVELCF, PNT OF PAFP.= 7TALL 7ATION LGUIEFLIYES FCP
TIY'.7-DPIVFN SIMULATION

12. PERSONAL AUTHOR(S)
Mark I. Fuson, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
MS Thesis FROM TO_ 1989 December i190

1E. UPFLEMENTARY NOTATION

17. COSATI CODES lb. SUBJECT TERMS (Continue on reverse if necessary and identfl' by block number)
FIELD GROUP SUB-GROUP
71 05 Computerized Simulation, Parallel processing

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Dr. Thomas C. Hartrum
Associate Professor
Department of Electrical and Computer Engineering

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSiFICATION
U UNCLASSIFIED/UNLIMITED tj SAME AS RPT C1 DTIC USERS UNTCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Dr. Thomas C. Hartrum (513)255-3576 AFIT/ENG

DO Form 1473, JUN 86 Previous editions arc obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASS I FIED

UNCLASSIFIED

Block 19.
Distributed simulation is an area of research which offers great promise for speeding lip

simulations. Program parallelization is usually an iterative process requiring several attempts
to produce an efficient, parallel implementation of a sequential program. This is due to the.

lack of anv standards or guidelines for program parallelization.
In this research effort a Ballistic Missile Defense (BMD) time-driven sim),!-,tio r n ,- -

developed by DESE Research and Engineering, was used as a test vehicle for investigalil t
para!lelization options for distributed and shared memory architectures. Implementatiolls
were developed to address issues of functional versus data program decomposition. comput 1,-
tim versus communi cat jons overhead, and shared versus distributed memory arclti ectu rs.

Performance data collected from each implementation was used to develop guidelines for

mplementing parallel versions of sequenti'i time-driven simulations. These guidelines wer,
based on the relative perfornance of the various implementations and on general oscirvat jolt1

made during the course of the rt-search.

£140

UNCLJS, S I FIFD

